›› 2006, Vol. 27 ›› Issue (7): 1124-1128.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Methods for estimating bearing capacity of layered foundations in harbor engineering

YUAN Fan-fan1, LUAN Mao-tian1, 2, YAN Shu-wang3, SUN Wan-he4, MAO Ming5   

  1. 1. Key laboratory of Rock and Soil Mechanisms, Chinese Academy of Sciences, Wuhan 430071, China; 2. Institute of Geotechnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 3. Institute of Geotechnical Engineering, School of Civil Engineering and Architectures, Tianjin University, Tianjin 300072, China; 4. Tianjin Port Engineering Institute, Tianjin 430052, China; 5.Huhei Institute of Traffic Plan and Design, Wuhan 430051, China
  • Received:2005-03-04 Online:2006-07-10 Published:2013-11-19

Abstract: In Harbor Engineering, it is often the case that subsoil consists of layered soils. In China, Hansen 61’s methods、Hansen 69’s methods and developed Sokolovski methods were recommended by the code to estimate the ultimate bearing capacity of layered foundation. However, in practice the ultimate bearing capacities of layered foundations predicted by the three methods are different from each other. Considering inherits of the codes, a calculation program has been compiled using Newton iteration methods to solve the expressions presented in the codes. Then, basing on the geotechnical information in the Yangtze River mouth region, the ultimate bearing capacities of layered foundations have been computed by the program and the predictions from three methods have been compared each other. The results show that under the same geotechnical conditions and similar loading conditions, the developed Sokolovski methods shall provide the largest bearing capacity values among three methods; while the bearing capacity value from Hansen 69’s methods shall be smallest.

Key words: harbor engineering, ultimate bearing capacity, layered foundation, Newton iteration methods

CLC Number: 

  • TU 451
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YANG Su-chun, ZHANG Ming-yi, WANG Yong-hong, SANG Song-kui, MIAO De-zi. Field test on pile tip resistance of closed-end jacked pipe pile penetrating into layered foundation [J]. Rock and Soil Mechanics, 2018, 39(S2): 91-99.
[2] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[3] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[4] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
[5] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[6] KONG Gang-qiang, PENG Huai-feng, ZHU Xi , GU Hong-wei, ZHOU Li-duo,. Model tests on bearing capacity of longitudinal section shaped pile under lateral load [J]. , 2018, 39(1): 229-236.
[7] LEI Yong, YIN Jun-fan, CHEN Qiu-nan, YANG Wei,. Determination of ultimate bearing capacity of cave roof using limit analysis method [J]. , 2017, 38(7): 1926-1932.
[8] HU Wei-dong, CAO Wen-gui, YUAN Qing-song,. Upper bound solution for ultimate bearing capacity of ground adjacent to slope based on nonlinear failure criterion [J]. , 2017, 38(6): 1639-1646.
[9] JIU Yong-zhi, ZHU Yan-zhi,. Nonlinear analysis for bearing characteristics of vertically loaded single pile in non-homogeneous soil under excavation [J]. , 2017, 38(6): 1666-1674.
[10] KONG Gang-qiang, GU Hong-wei, CHE Ping, REN Lian-wei, PENG Huai-feng,. Impact of pile shaft shapes on vertical bearing capacity of belled piles [J]. , 2017, 38(2): 361-367.
[11] XIE Xin-yu, HAN Dong-dong, HUANG Li , WANG Zhong-jin, LIU Kai-fu,. Calculation of ultimate bearing capacity factor Nγ for rough strip footings [J]. , 2016, 37(S1): 209-214.
[12] SU Fang-mei, LIU Hai-xiao, LI Zhou. Analysis of ultimate bearing capacity of plate anchors in clay using a coupled Eulerian-Lagrangian method [J]. , 2016, 37(9): 2728-2736.
[13] GAO Ang,ZHANG Meng-xi ,ZHU Hua-chao,JIANG Sheng-wei,. Model tests on geocell-reinforced embankment under cyclic and static loadings [J]. , 2016, 37(7): 1921-1928.
[14] CHENG Li, LIU Yao-ru, PAN Yuan-wei, YANG Qiang, ZHOU Zhong, XUE Li-jun,. Research on ultimate bearing capacity of Jinping-I Arch Dam based on impoundment period inversion [J]. , 2016, 37(5): 1388-1398.
[15] ZHENG Gang , ZHOU Hai-zuo , CHENG Xue-song , LIU Jing-jin , ZHENG Shuai-qun, . Numerical analysis of the ultimate bearing capacity of the layered soil foundation with sand overlying clay [J]. , 2016, 37(5): 1475-1485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] HAO Dong-xue, CHEN Rong, LUAN Mao-tian, WU Ke. Numerical analysis of SBPT for estimation of undrained shear strength[J]. , 2010, 31(7): 2324 -2328 .
[3] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[4] BING Hui , HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. , 2011, 32(8): 2307 -2312 .
[5] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[6] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[7] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[8] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
[9] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .
[10] ZHANG Le-wen, ZHANG De-yong, LI Shu-cai, QIU Dao-hong. Application of RBF neural network to rockburst prediction based on rough set theory[J]. , 2012, 33(S1): 270 -276 .