›› 2006, Vol. 27 ›› Issue (8): 1353-1356.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on prestress loss of anchor cables under long-term loading

ZHOU Yong-jiang1, HE Si-ming2, YANG Xue-lian1   

  1. 1. Highway Planning Survey, Design and Research Institute, Sichuan Provincial Communications Department, Chengdu 610041, China; 2. Chengdu Research Institute of Environment and Disaster in Mountainous Regions, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2004-11-16 Online:2006-08-10 Published:2013-11-26

Abstract: The pretress loss of anchor cable is the key cause induced the anchor structure failure; based on investigating all influencing factors, a method for calculating prestress loss is put forward; the influencing factors of prestress loss of anchor cable under long-term loading are analyzed; the relaxation model of steel strand, rheological model of rock as well as creep damage model of grouted material are put forward respectively; and using these theory to predict the prestress loss of anchor cable. There are the significant- sense to design and manage anchor cables.

Key words: prestress loss, relaxation, creep, rheology

CLC Number: 

  • TU 757
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[2] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[3] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[4] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[5] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[6] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[7] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[8] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[9] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[10] SUN Qian-cheng, ZHENG Min-zong, LI Shao-jun, GUO Hao-sen, CHENG Yuan, PEI Shu-feng, JIANG Quan, . Variation characteristics and determination of tunnel relaxation depth of columnar jointed rock mass [J]. Rock and Soil Mechanics, 2019, 40(2): 728-736.
[11] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[12] CUI De-shan, CHEN Qiong, XIANG Wei, WANG Jing-e, . Experimental study of stress relaxation characteristics of saturated sliding zone soils of Huangtupo landslide under triaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 209-216.
[13] LIU Quan-sheng, LUO Ci-you, CHEN Zi-you, LIU He, SANG Hao-min, WANG Wen-kai, . Development of triaxial rheological testing equipment for in-situ rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 473-479.
[14] TANG Jian-xin, TENG Jun-yang, ZHANG Chuang, LIU Shu, . Experimental study of creep characteristics of layered water bearing shale [J]. , 2018, 39(S1): 33-41.
[15] CAI Ting-ting, FENG Zeng-chao, ZHAO Dong, JIANG Yu-long,. A creep model for lean coal based on hardening-damage mechanism [J]. , 2018, 39(S1): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yi-feng, ZHANG Qing. Analysis of anti-sliding stability in deep foundation of Xiangjiaba gravity dam based on interface element method[J]. , 2009, 30(9): 2691 -2696 .
[2] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[3] ZHANG Hu-yuan, FENG Lei, WU Jun-rong, WANG Bao, LIU Ping. Alternative liner and design principles for municipal solid waste landfills[J]. , 2009, 30(9): 2759 -2762 .
[4] XU Chao, HUANG Liang, XING Hao-feng. Influence of cement-bentonite slurry mixing ratio on permeability of cutoff wall[J]. , 2010, 31(2): 422 -426 .
[5] DING Yu, WANG Quan-cai, HE Si-ming. Loading transfer mechanism of dispersion-type tensile cables along anchoring section[J]. , 2010, 31(2): 599 -603 .
[6] XU Wei-ya,ZHENG Wen-tang,NING Yu,MENG Guo-tao,WU Guan-ye,SHI An-chi. 3D anisotropic numerical analysis of rock mass with columnar joints for dam foundation[J]. , 2010, 31(3): 949 -955 .
[7] CHEN Kai-sheng, SHA Ai-min. Study of deformation characteristic of compacted loess[J]. , 2010, 31(4): 1023 -1029 .
[8] LIU Dong-hai, HUANG Pei-zhi, FENG Shou-zhong. Breakage probability assessment of TBM construction tunnel lining segments considering geologic uncertainty[J]. , 2010, 31(4): 1181 -1186 .
[9] ZHANG Dong-Mei, FAN Zhen-Yu, HUANG Hong-Wei. Calculation method of shield tunnel lining considering mechanical characteristics of joints[J]. , 2010, 31(8): 2546 -2552 .
[10] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .