›› 2007, Vol. 28 ›› Issue (1): 179-184.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on engineering synthetical classification of rock-soil aggregate mixture

DONG Yun1, 2, CHAI He-jun3   

  1. 1. Department of Civil Engineering, Huaiyin Institute of Technology, Huaian 223001, China; 2. Research Institute of Geotechnical, Hohai University, Nanjing 210097, China; 3. Chongqing Communication Research and Design Institute, Chongqing 400067, China
  • Received:2005-03-09 Online:2007-01-10 Published:2013-08-28

Abstract: Preestimate the intensity of rock-soil aggregate mixture quickly and accurately is not only helpful to design and calculate, but also to establish the construction scheme and choose properly compaction method, while the rock-soil aggregate mixture are broadly used in roadbeds, dykes and dams, and foundation engineering. The physico-mechanical character of the mixture are essentially determinated by the granule property of the mixture and the interior frame of the mixture, but the classification existed are always set about from the grain composition, it is hardly to predict the character of the mixture from the classification. Aimed at the engineering application, studied the classification method of the mixture supported by the results of lab shear test and compaction test, and utilized the nonlinear theory of fractal geometry, this article assorted the mixture into 3 levels and 24 kinds according to the property of rock and soil, the ratio of rock to soil and the granularity distribution fraction dimension of the mixture, to present the diversity on characters of different kinds of mixtures meanwhile. This synthetical classification method is prone to apply in practice for the criterion of this method is simple and it can be determined conveniently; and the representative strength of different kinds of mixtures could be quickly predict through this classification method.

Key words: rock-soil aggregate mixture, engineering classification, ratio of rock to soil, granularity distribution, fractal dimension

CLC Number: 

  • TU 47
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[2] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[3] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[4] MA Qin-yong, GAO Chang-hui,. Energy absorption and fractal characteristics of basalt fiber-reinforced cement- soil under impact loads [J]. , 2018, 39(11): 3921-3928.
[5] CHEN Yi, ZHANG Hu-yuan, YANG Long, . Analogy study on evolution of microstructure of earthen monument during natural weathering process [J]. , 2018, 39(11): 4117-4124.
[6] YANG Peng, HUA Xin-zhu, LIU Qin-jie, YANG Ming, CHENG Shi-xing, WU Biao,. Experimental study of dynamic evolution characteristic of floor fractal dimension of gob-side entry retaining with large section in deep mine [J]. , 2017, 38(S1): 351-358.
[7] WANG Zhi-gang, GUO Xiao-fei. Study of roof fissures of mining induced roadway in Shuanghe Coal Mine based on fractal theory [J]. , 2017, 38(8): 2377-2384.
[8] XIANG Guo-sheng, XU Yong-fu, CHEN Tao, JIANG Hao,. Fractal model for swelling deformation of bentonite in salt solution [J]. , 2017, 38(1): 75-80.
[9] YAO Shao-feng, ZHANG Zhen-nan, GE Xiu-run, QIU Yi-ping, XU Jin-ming,. Correlation between fracture energy and geometrical characteristic of mesostructure of marble [J]. , 2016, 37(8): 2341-2346.
[10] YU Bang-yong,CHEN Zhan-qing,WU Jiang-yu,LI Qiang,DING Qi-le,. Experimental study of compaction and fractal properties of grain size distribution of saturated crushed mudstone with different gradations [J]. , 2016, 37(7): 1887-1894.
[11] WU Ying,MA Gang,ZHOU Wei,YANG Li-fu. Optimization of gradation of rockfill materials based on the fractal theory [J]. , 2016, 37(7): 1977-1985.
[12] ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, YU Sheng-guan. Grading scale method for coarse-grained soils based on fractal theory [J]. , 2016, 37(12): 3513-3519.
[13] WANG Zi-juan, LIU Xin-rong, FU Yan, ZHANG Liang, YUAN Wen, . Erosion analysis of argillaceous sandstone under dry-wet cycle in two pH conditions [J]. , 2016, 37(11): 3231-3239.
[14] TONG Chen-xi , ZHANG Sheng , LI Xi , SHENG Dai-chao , . Evolution and ultimate state of breakage for uniformly graded granular materials [J]. , 2015, 36(S1): 260-264.
[15] WANG Chuan-yang ,YANG Chun-he ,HENG Shuai ,MAO Hai-jun,. CT test for evolution of mudstone fractures under compressive load [J]. , 2015, 36(6): 1591-1597.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[2] ZHANG Guang-ming, LIU He, ZHANG Jin, WU Heng-an, WANG Xiu-xi. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling[J]. , 2010, 31(5): 1657 -1662 .
[3] MEI Guo-xiong, LU Ting-hao, CHEN Hao, LI Zhi. True triaxial experiment of foundation pit considering initial stress[J]. , 2010, 31(7): 2079 -2082 .
[4] XU Ming, CHEN Jin-feng, SONG Er-xiang. Large scale triaxial testing of Douposi moderately-to-slightly weathered fill materials[J]. , 2010, 31(8): 2496 -2500 .
[5] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[6] YIN Hong-lei,XU Qian-jun,LI Zhong-kui. Effect of swelling deformation on stability of expansive soil slope[J]. , 2009, 30(8): 2506 -2510 .
[7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[8] DENG Dong-ping,LI Liang,ZHAO Lian-heng. A new method of sliding surface searching for general stability of slope based on Janbu method[J]. , 2011, 32(3): 891 -898 .
[9] LI Jian-jun,SHAO Sheng-jun,YANG Fu-yin,YANG Chun-ming. Experimental research on impermeable characteristics of slurry cake in cutoff wall hole of coarse-grained soil[J]. , 2012, 33(4): 1087 -1093 .
[10] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .