›› 2007, Vol. 28 ›› Issue (1): 193-196.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on aseismic measures of earth dams in meizoseismal area

MI Zhan-kuan, LI Guo-ying   

  1. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2005-03-30 Online:2007-01-10 Published:2013-08-28

Abstract: The construction qualities of earth dams built in the fifties to seventies of the twentieth century are usually worse and their foundations are the silty soil which has low density and is quite easy to be liquefied under the action of earthquake. It’s necessary to estimate their aseismic safety and study on the corresponding aseismic measures. Aiming at Qing-an Reservoir, the three schemes, such as concrete continuous wall, vibro-replacement stone column and rock pressure, are analyzed by FEM; and the reasonable engineering measure which may be widely used in the analogous project is recommended.

Key words: earth dam, aseismic reinforcement, dynamic analysis, liquefaction

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[2] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[3] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[4] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[5] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
[6] XU Cheng-shun, DOU Peng-fei, GAO Liu-cheng, CHEN Su, DU Xiu-li, . Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 147-155.
[7] WANG Hai-bo, WU Qi, YANG Ping,. Effect of fines content on liquefaction resistance of saturated sandy soils [J]. , 2018, 39(8): 2771-2779.
[8] WANG Xiao-wen, ZHANG Jian-min, LEE C F, . Wave-induced interaction of saturated sandy seabed with pipeline [J]. , 2018, 39(7): 2499-2508.
[9] FU Hai-qing, YUAN Xiao-ming, WANG Miao,. An incremental model of pore pressure for saturated sand based on in-situ liquefaction test [J]. , 2018, 39(5): 1611-1618.
[10] FANG Zhi, CHEN Yu-min, HE Sen-kai, . A modified method for mechanical-hydraulic coupled simulation based on a single-phase fluid for desaturated sand soil [J]. , 2018, 39(5): 1851-1857.
[11] YU Xiang, KONG Xian-jing, ZOU De-gao, ZHOU Chen-guang, . Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden [J]. , 2018, 39(5): 1858-1866.
[12] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[13] ZHOU Zheng-long, CHEN Guo-xing, ZHAO Kai, WU Qi, MA Wei-jia. Effect of the direction angle of cyclic loading on undrained cyclic behavior of saturated silt [J]. , 2018, 39(1): 36-44.
[14] ZHOU Yan-guo, TAN Xiao-ming, LIANG Tian, HUANG Bo, LING Dao-sheng, CHEN Yun-min,. Evaluation of soil liquefaction by ground motion intensity index by centrifuge model test [J]. , 2017, 38(7): 1869-1877.
[15] DUAN Lun-liang, ZHANG Qi-bo, HUANG Bo, ZHU Bing. Study of transient liquefaction stability of seabed beneath offshore bridge under extreme wave loading [J]. , 2017, 38(7): 2113-2118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIANG Fa-yun, YU Feng, LI Jing-pei, YAO Guo-sheng. Analysis of bearing capacity of a single pile under adjacent building subjected to lateral soil movements[J]. , 2010, 31(2): 449 -454 .
[2] LIAN Chuan-jie, XU Wei-ya, WANG Ya-jie, WANG Zhi-hua. Numerical simulation of entry performance supported by a new high strength and high pretension yieldable bolts[J]. , 2010, 31(7): 2329 -2335 .
[3] XU Fei,XU Wei-ya,WEN Sen,LIU Zao-bao,ZHAO Yan-xi. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. , 2010, 31(11): 3651 -3655 .
[4] QIAN Ji-yun, ZHANG Ga, ZHANG Jian-min. Centrifuge model tests for deformation mechanism of soil slope during rainfall[J]. , 2011, 32(2): 398 -402 .
[5] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[6] XIAO Zheng-xue, GUO Xue-bin, ZHANG Ji-chun, PU Chuan-jin, XIAO Ding-jun. Numerical simulation and test of lamination effect caused by blasting in layered rock slope with weak intercalated layer[J]. , 2009, 30(S1): 15 -18 .
[7] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[8] DAI Guo-liang, ZHOU Xiang-qin, LIU Yun-zhong, LIU Li-ji, GONG Wei-ming. Model test research on horizontal bearing capacity of closed diaphragm wall[J]. , 2011, 32(S2): 185 -189 .
[9] HU Wei,HAN Jian-gang,LI Guang-fan. A simplified stress-strain relationship of saturated soil based on structure’s evolution[J]. , 2011, 32(9): 2651 -2655 .
[10] WANG Jun-bao LIU Xin-rong LI Peng. Discussion of settlement-velocity ratio method for evaluating consolidation coefficient[J]. , 2011, 32(10): 3085 -3088 .