›› 2018, Vol. 39 ›› Issue (7): 2499-2508.doi: 10.16285/j.rsm.2016.2324

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Wave-induced interaction of saturated sandy seabed with pipeline

WANG Xiao-wen1, 2, ZHANG Jian-min1, 2, LEE C F1, 2   

  1. 1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; 2. Institute of Geotechnical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2016-10-02 Online:2018-07-10 Published:2018-08-05
  • Supported by:

    This work was supported by the General Program of the National Natural Science Foundation of China (51678346) and the National Natural Science Foundation of China (51079074).

Abstract: This paper applies Biot’s consolidation theory and an elasto-plastic constitutive model on the post-liquefaction deformation of sand to investigate the wave-induced dynamic interaction between pipeline and seabed. The numerical simulations can reasonably reproduce the accumulation of excess pore pressure and the process of soil liquefaction around the pipeline induced by linear waves in the liquefiable finite seabed. The numerical results show qualitatively consistent with Sumer et al.’s results, and demonstrate conclusions as follows: The distribution of liquefaction in the seabed is significantly influenced by the pipeline, liquefaction first occurs at the seabed surface and underneath the pipeline, then transfers toward the soil surrounding the pipeline. Eventually, the entire sandy seabed around the pipeline liquefies, leading pipeline flotation. The degree of liquefaction in the soil around pipeline is intensified by pipeline. The soil liquefaction is induced by waves which is found mainly the combination of accumulation of excess pore pressure and seepage forces. The elasto-plastic method of dynamic analysis presents more rational result compared to the existing elastic method in simulating the changes of seepage field and stress field under wave actions for realistic ocean environment.

Key words: wave, saturated sandy seabed, pipeline, liquefaction, elasto-plastic method of dynamic analysis

CLC Number: 

  • TU 411

[1] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[2] WANG Jin-an, ZHOU Jia-xing, LI Fei . Study on temporal and spatial evolution law of landslide and mechanical response of overburden pipe [J]. Rock and Soil Mechanics, 2020, 41(7): 2155-2167.
[3] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[4] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[5] WANG Li-an, ZHAO Jian-chang, YU Yun-yan, . Propagation characteristics of Rayleigh wave in non-homogeneous saturated foundation [J]. Rock and Soil Mechanics, 2020, 41(6): 1983-1990.
[6] TAO Shuai, DONG Yi, WEI Chang-fu, . Small-strain stiffness test system of soil under controllable environmental humidity [J]. Rock and Soil Mechanics, 2020, 41(6): 2132-2142.
[7] LIU Hong-bo, ZHOU Feng-xi, YUE Guo-dong, HAO Lei-chao. Propagation characteristics of thermoelastic wave in unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(5): 1613-1624.
[8] YANG Jing-xi, HUANG Shu-ling, LIU Zhong-xu. Study on the relationship between cross-hole sonic wave and single-hole sonic wave of rock mass at Jinping I hydropower station [J]. Rock and Soil Mechanics, 2020, 41(4): 1347-1356.
[9] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[10] LIU Yuan, MA Xiang-Hua, LIU Yang, XIAO Fei, CHEN Yu-hai. Dry coupled ultrasonic testing technology and automatic picking method for determination of arrival times [J]. Rock and Soil Mechanics, 2020, 41(4): 1455-1464.
[11] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[12] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[13] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[14] ZHOU Feng-xi, LIU Hong-bo, CAI Yuan-qiang, . Analysis of propagation characteristics of Rayleigh waves in saturated porothermoelastic media [J]. Rock and Soil Mechanics, 2020, 41(1): 315-324.
[15] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!