›› 2007, Vol. 28 ›› Issue (5): 895-902.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation on shear rheological mechanical properties of shale in Longtan Hydropower Project

YANG Sheng-qi, XU Wei-ya, YANG Song-lin   

  1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • Received:2005-06-20 Online:2007-05-10 Published:2013-09-10

Abstract: Shear rheology experiments were carried out for the shale in Longtan Hydropower Project by using a servo-controlled shear rheology testing machine. The variation law of shear displacement of shale with the time is analyzed. The variation tendency of shear rheological rates under different stress states is discussed. At the same time, the variation of shear strength of rock with the time is discussed. When the proposed nonlinear rheological component (NRC model) by the author is parallel connected with Kormanura model; so that a new nonlinear rheological model can be gained, which can describe the accelerating rheological properties. Using the shear rheological curves of shale, the proposed nonlinear viscoelastoplastic shear rheological model of rock is identified, which gets the viscoelastoplastic rheological parameters of the shale. The comparison between the rhelogical model and experimental result shows that the proposed rheological model behaves reasonably well.

Key words: rock mechanics, shale, shear rheology, nonlinear rheological component (NRC model), nonlinear shear rheological model

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[3] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[4] JI Guo-fa, LI Kui-dong, ZHANG Gong-she, LI Shao-ming, ZHANG Lei, LIU Wei, . Fractal calculation method of model I fracture toughness of shale rock and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1925-1931.
[5] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[6] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[7] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[8] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[9] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[10] SONG Hong-qiang, ZUO Jian-ping, CHEN Yan, LI Li-yun, HONG Zi-jie, . Revised energy drop coefficient based on energy characteristics in whole process of rock failure [J]. Rock and Soil Mechanics, 2019, 40(1): 91-98.
[11] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[12] TANG Jian-xin, TENG Jun-yang, ZHANG Chuang, LIU Shu, . Experimental study of creep characteristics of layered water bearing shale [J]. , 2018, 39(S1): 33-41.
[13] LI Yu-dan, DONG Ping-chuan, ZHOU Da-wei, WU Zi-seng, WANG Yang, CAO Nai. A dynamic model of apparent permeability for micro fractures in shale gas reservoirs [J]. , 2018, 39(S1): 42-50.
[14] ZHAO Zi-jiang, LIU Da-an, CUI Zhen-dong, TANG Tie-wu, HAN Wei-ge,. Experimental study of determining fracture toughness KIC of shale by semi-disk three-point bending [J]. , 2018, 39(S1): 258-266.
[15] ZUO Yu-jun, SUN Wen-ji-bin, WU Zhong-hu, XU Yun-fei, . Experiment on permeability of shale under osmotic pressure and stress coupling [J]. , 2018, 39(9): 3253-3260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[2] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[3] LI Shu-cai,XU Bang-shu,DING Wan-tao,ZHANG Qing-song. Weighted function method for minimum rock cover thickness of subsea tunnel[J]. , 2009, 30(4): 989 -996 .
[4] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[5] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[6] HE Xu-wen ,LIU Zhong ,LIAO Biao ,WANG Cui-cui. Stability analysis of jointed rock slopes based on discrete element method[J]. , 2011, 32(7): 2199 -2204 .
[7] YANG Feng-wei, LI Hai-bo, LIU Ya-qun, XIA Xiang, HAO Ya-fei, NIU Lei. Monitoring of blasting vibration and numerical simulation of slope in Taishan Nuclear Power Station[J]. , 2011, 32(S2): 628 -633 .
[8] WANG You , LIU Jian-hua , WANG Xing-hua , CAI Jun-jun. Nonlinear finite element analysis of pile-soil interaction of bridge pile group foundation in soft soil stratum[J]. , 2012, 33(3): 945 -951 .
[9] JI Wen-dong, YANG Chun-he, YAO Yuan-feng, SHI Xi-lin. Behaviors of existing salt cavern group used for underground energy storage[J]. , 2012, 33(9): 2837 -2844 .
[10] GAO Guang-yun, QIU Chang, WANG Yi-sun . An improved two-parameter layer model[J]. , 2003, 24(2): 159 -163 .