›› 2007, Vol. 28 ›› Issue (6): 1145-1150.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on calculation method of retaining structure with double-row piles and its application

YING Hong-wei1, CHU Zhen-huan1, LI Bing-he2, LIU Xing-wang2   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Shenzhen Gongkan Geotechnical Engineering Co. Ltd., Shenzhen 518026, China;3. Zhejiang Building Design and Research Institute, Hangzhou 310006, China
  • Received:2005-07-11 Online:2007-06-11 Published:2013-09-13

Abstract: According to the current calculating models of the retaining structure with double-row piles that based on the method of elastic reaction, finite difference method programs are developed respectively. A case study is introduced. The differences among the analyzing results by those different models are compared. Based on observation data, the most reasonable model is presented; and some influencing factors have been analyzed. The conclusions are to be very useful for optimum design of retaining structures with double-row piles.

Key words: retaining structure of double-row piles, earth pressure, calculating method

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[3] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[4] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[5] ZHU Jun-gao, JIANG Ming-jie, LU Yang-yang, JI En-yue, LUO Xue-hao, . Experimental study on influence of stress state on at-rest earth pressure coefficient for coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(3): 827-833.
[6] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[7] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[8] LIANG Bo, LI Yan-jun, LING Xue-peng, ZHAO Ning-yu, ZHANG Qing-song, . Determination of earth pressure by miniature earth pressure cell in centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(2): 818-826.
[9] JIANG Cheng-xuan, CHEN Bao-guo, MAO Xin-ying, SHE Ming-kang. Stress characteristics of high fill load-shedding culvert on flexible foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 275-280.
[10] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[11] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[12] YAO Ai-jun, ZHANG Jian-tao, GUO Hai-feng, GUO Yan-fei. Influence of unloading-loading of foundation on shield tunnel underneath [J]. , 2018, 39(7): 2318-2326.
[13] XU Chang-jie, LIANG Lu-ju, CHEN Qi-zhi, LIU Yuan-kun,. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone [J]. , 2018, 39(6): 1927-1934.
[14] XIE Tao, LUO Qiang, ZHANG Liang, LIAN Ji-feng, YU Yue-ming, . Calculation of wall displacement to reach active or passive earth pressure state [J]. , 2018, 39(5): 1682-1690.
[15] ZHENG Tong , LIU Hong-shuai, YUAN Xiao-ming, TU Jie-wen, TANG Ai-ping, QI Wen-hao,. Full process of static and dynamic performances of cantilever anti-slide pile [J]. , 2018, 39(3): 854-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiang, LIU Yao-ru, LENG Kuang-dai, Lü Qing-chao, YANG Chun-he. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. , 2009, 30(12): 3553 -3561 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[7] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[8] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[9] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[10] YANG Xiao, CAI Xue-qiong. Vertical vibration of pile in saturated viscoelastic soil layer considering transversal effects[J]. , 2011, 32(6): 1857 -1863 .