›› 2008, Vol. 29 ›› Issue (11): 3053-3058.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Discussion on strength reduction FEM in geotechnical engineering

LIANG Qing-guo, LI De-wu   

  1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2007-12-28 Online:2008-11-10 Published:2013-08-07

Abstract: The strength reduction FEM (SRFEM) is the most popular method in geotechnical limit analysis FEM. It has been studied and applied in recent years quickly; and significant achievements have been obtained and its feasibility, superiority and practicability in geotechnical engineering have been proved. Several problems about SRFEM are discussed such as the definition of safety factor, utility condition of Mohr-Coulomb criterion and access to calculation parameters after the adequate praise and affirmation of its advantage and characteristics. It is concluded that the application conditions and access to calculation parameters of SRFEM should be carefully considered; the further and probable research might be turned to the safety and stability analysis of geotechnical structure with the emphasis on deformation control; and the development of professional calculation software of multiple methods and functions with the combination & complementation of traditional limit equilibrium method.

Key words: geotechnical engineering, strength reduction FEM, safety factor, Mohr-Coulomb criterion, shear failure

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
    [2] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
    [3] LUO Bin-yu, YE Yi-cheng, CAO Zhong, WANG Qi-hu, LI Yu-fei, CHEN Hu, . Estimation of pillar strength and effect of inclination under gently inclined layered deposits based on Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2019, 40(5): 1940-1946.
    [4] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
    [5] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
    [6] ZHANG De,LIU En-long,LIU Xing-yan,SONG Bing-tang, . Investigation on strength criterion for frozen silt soils [J]. , 2018, 39(9): 3237-3245.
    [7] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
    [8] YANG Li-ping. Analysis of progressive failure of a loess landslide [J]. , 2018, 39(7): 2591-2598.
    [9] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
    [10] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
    [11] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
    [12] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
    [13] FAN Wen-liang, WANG Yu-le, WEI Qi-ke, YANG Peng-chao, LI Zheng-liang, . Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. , 2018, 39(4): 1463-1468.
    [14] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
    [15] WANG Zhen, YE Xiao-ming, LIU Yong-xin,. Improved Janbu slices method considering progressive destruction in landslide [J]. , 2018, 39(2): 675-682.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
    [2] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
    [3] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
    [4] LU Zheng, YAO Hai-lin, CHENG Ping, WU Wan-ping. Ground vibration of soft subgrade subjected to a non-uniformly distributed train load[J]. , 2010, 31(10): 3286 -3294 .
    [5] YIN Guang-zhi,WANG Deng-ke,ZHANG Dong-ming,WEI Zuo-an. Endchronic damage constitutive model of coal containing gas[J]. , 2009, 30(4): 885 -889 .
    [6] SONG Wei-dong, WANG Hong-yong, WANG Xin, DU Jian-hua. Theoretical analysis and test of impact load due to ore dumping in chute[J]. , 2011, 32(2): 326 -332 .
    [7] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .
    [8] XU Wen-feng. Study of whole curves of Rock mass displacements in subsea tunnel[J]. , 2009, 30(S1): 220 -224 .
    [9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
    [10] ZHOU Yan-jun1, 2, LI Zu-kui2, ZHOU Bo2, ZHAO Xiu-ju2, YAN Jing2, ZHANG Jian. Experimental research on drilling and cutting characteristics of PDC bit at home and abroad[J]. , 2009, 30(S2): 257 -262 .