›› 2008, Vol. 29 ›› Issue (4): 1061-1066.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of rainfall infiltration mechanism of rainstorm landslide

LIU Li-ling, YIN Kun-long   

  1. Engineering Faculty, China University of Geosciences, Wuhan 430074, China
  • Received:2006-04-12 Online:2008-04-10 Published:2013-07-10

Abstract: Rainstorm could induce a mass of landslides occurrence. There was a different critical rainfall value in different regions, while the rainfall intension was larger than the value, a lot of landslide would occur, thus had been proved by many happened facts. In general, the theory of rainfall infiltration was the recharge rate was a constant when the rainfall intension was larger than the certain critical value, the more redundant rainfalls become the flow on the earth surface, it couldn’t infiltrate into the earth, as was not consonant with the fact that the more precipitation could induce the more landslide. There were a lot of fissures in the slope which had enormously contributed to the rainfall infiltration. It was simulated by finite element method that changes of transient seepage field in the slope with fissures and without fissure, and the slope stability was calculated in different depths potential slip surface via the Bishop method. It was shown that the calculation result, considering the fissures, was more consistent with the macroscopically observed facts. The fissures existing in the slope should be considered enough when the slope stability about rainfall infiltration was evaluated. Only the rainfall intensity was larger than the certain critical value, the enough rainfallfall could infiltrate into slope body along the fissures, the effect of fissures on stability would be obvious.

Key words: landslide, fissure, unsaturated flow, rainfall infiltration, critical rainfall, stability analysis

CLC Number: 

  • P 642.22
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
    [2] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
    [3] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
    [4] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
    [5] WEI Jiu-chuan, HAN Cheng-hao, ZHANG Wei-jie, XIE Chao, ZHANG Lian-zhen, LI Xiao-peng, ZHANG Chun-rui, JIANG Ji-gang. Mechanism of fissure grouting based on step-wise calculation method [J]. Rock and Soil Mechanics, 2019, 40(3): 913-925.
    [6] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
    [7] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
    [8] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
    [9] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
    [10] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
    [11] FAN Ning, NIAN Ting-kai, JIAO Hou-bin, ZHENG De-feng, . Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides [J]. Rock and Soil Mechanics, 2019, 40(1): 413-420.
    [12] MA Xian-chun, LUO Gang, DENG Jian-hui, SHANGGUAN Li, . Study of anchorage depth of anti-sliding piles for steep-sliding accumulation landslides [J]. Rock and Soil Mechanics, 2018, 39(S2): 157-168.
    [13] WANG Gui-lin, LIANG Zai-yong, ZHANG Liang, SUN Fan, . Study of influence mechanism of Z-type fissure on sandstone strength and fracture behavior [J]. Rock and Soil Mechanics, 2018, 39(S2): 389-397.
    [14] ZHANG Zhi-guo, ZHANG Cheng-ping, MA Bing-bing, GONG Jian-fei, YE Tong. Physical model test and numerical simulation for anchor cable reinforcements of existing tunnel under action of landslide [J]. , 2018, 39(S1): 51-60.
    [15] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] ZHANG Guang-ming, LIU He, ZHANG Jin, WU Heng-an, WANG Xiu-xi. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling[J]. , 2010, 31(5): 1657 -1662 .
    [2] XU Ming, CHEN Jin-feng, SONG Er-xiang. Large scale triaxial testing of Douposi moderately-to-slightly weathered fill materials[J]. , 2010, 31(8): 2496 -2500 .
    [3] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
    [4] RAN Long, HU Qi. Analysis of seepage failure of deep foundation pit in silty sand[J]. , 2009, 30(1): 241 -245 .
    [5] LI Jun-cai,JI Guang-qiang,SONG Gui-hua,ZHANG Qiong,WANG Zhi-liang,YAN Xiao-min. In-situ measurement and analysis of sparse pile-raft foundation of high-rise building[J]. , 2009, 30(4): 1018 -1022 .
    [6] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
    [7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
    [8] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
    [9] WU Jian,FENG Shao-kong,LI Hong-jie. Study of automatically extracting structural plane parameters from borehole images[J]. , 2011, 32(3): 951 -957 .
    [10] JIN Xu-hao , LU Wen-bo , TIAN Yong , YAN Peng , CHEN Ming. Analysis of mechanisms of S wave generated in rock blasting process[J]. , 2011, 32(S2): 228 -232 .