›› 2008, Vol. 29 ›› Issue (8): 2144-2148.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of bearing and deforming behavior of secant piles of deep foundation pit excavation

HU Qi1, CHEN Yu2, KE Han1, CHEN Ren-peng1, YANG Hao1   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Institute of Geotechnical Engineering Zhejiang University, Hangzhou 310027, China; 2. Comprehensive Development of Urban Construction Office of Hangzhou Jianggan Distric, Hangzhou 310016, China
  • Received:2006-09-25 Online:2008-08-11 Published:2013-08-02

Abstract: Linear elastic model is common used to analayze retaining structure of deep foundation pit excavation, which is an approximate treatment in some aspects, such as material compose, material characteristics and so on. There will be some warp in the analysis with this model compared with practical situation. Based on the practical project of Qiutao Road Station excavation of Hangzhou Metro No.1. A nonlinear solid model is established to study the loading mechanism of secant piles. Compared with the measured results, it is shown that this method is vaild and it can be applied to the deep foundation pit design and construction.

Key words: secant piles, three-dimensional model, nonlinearity, crack

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Hai-jun, YU Shu-yang, REN Ran, TANG Lei, LI Xin-yun, JIA Yu, . Study on failure of brittle solids with circular hole and internal crack based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212.
[2] ZHANG Sheng, WANG Long-fei, CHANG Xu, WANG Dong-kun, WANG Xiao-liang, QIAO Yang, . Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749.
[3] JI Guo-fa, LI Kui-dong, ZHANG Gong-she, LI Shao-ming, ZHANG Lei, LIU Wei, . Fractal calculation method of model I fracture toughness of shale rock and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1925-1931.
[4] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[5] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[6] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[7] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang. Summary on damage self-healing property of rock salt [J]. Rock and Soil Mechanics, 2019, 40(1): 55-69.
[8] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[9] WANG Gui-lin, LIANG Zai-yong, ZHANG Liang, SUN Fan, . Study of influence mechanism of Z-type fissure on sandstone strength and fracture behavior [J]. Rock and Soil Mechanics, 2018, 39(S2): 389-397.
[10] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[11] LIU Gang, MA Feng-shan, ZHAO Hai-jun, FENG Xue-lei, GUO Jie,. Failure mechanisms study of heterogeneous jointed rock mass considering statistical damage model in tensile-shear test [J]. , 2018, 39(S1): 9-20.
[12] ZENG Yan-jin, RONG Guan, PENG Jun, SHA Song, . Experimental study of crack propagation of marble after high temperature cycling [J]. , 2018, 39(S1): 220-226.
[13] CHEN Jia-rui, DONG Yun, ZHANG Yuan, JIANG Yang, ZHANG Ji-hua, HE Chun-lin, LI Xi-meng,. Study of characteristics of collapsing-sand considering angle and fracture opening in thin bedrocks [J]. , 2018, 39(S1): 244-250.
[14] HUANG Zheng-hong, DENG Shou-chun, LI Hai-bo, YU Chong,. Tensile tests on plate specimens with bilateral asymmetric cracks [J]. , 2018, 39(S1): 267-274.
[15] LI Hai-li, ZHANG Chen-rong, LU Kai,. Nonlinear analysis of response of buried pipelines induced by tunneling [J]. , 2018, 39(S1): 289-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] ZHANG Chun-hui, YU Yong-jiang, ZHAO Quan-sheng. Seepage-stress elastoplastic coupling model of heterogeneous coal and numerical simulation[J]. , 2009, 30(9): 2837 -2842 .
[4] DING Zhou-xiang,YUAN Da-jun,ZHU He-hua. A novel coupling model for 1D finite-strain primary-secondary consolidation[J]. , 2010, 31(8): 2367 -2372 .
[5] LIU Jun-yan,LIU Yan,WANG Hai-ping. Design of removing diagonal brace in sub region considering coordinating role of space support systems[J]. , 2010, 31(9): 2854 -2860 .
[6] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[7] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .
[10] XU Wen-feng. Study of whole curves of Rock mass displacements in subsea tunnel[J]. , 2009, 30(S1): 220 -224 .