›› 2009, Vol. 30 ›› Issue (11): 3441-3446.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis method of rigid piled raft foundation under vertical loading

WANG Wei1,LI Xing-zhao2   

  1. 1. Shanghai Tongji Qimstar Science & Development Co., Ltd., Shanghai 200092, China; 2. School of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450052, China
  • Received:2008-03-04 Online:2009-11-10 Published:2010-01-07

Abstract:

An analysis method of piled raft foundation with rigid cap is presented with the research results about allocation rhythm of side resistance in pile group. Based on displacement compatibility relationship, pile body stress and strain equation and force equilibrium relationship, stiffness matrix which relate top force to displacement is deduced. Four types of intreraction is considered herein, that is pile-soil-pile interaction, pile-soil-plate interaction, plate-soil-pile interaction and plate-soil-plate interaction. It is mentioned that pile group can be comprised of piles with the property of various lengths, radii and stiffnesses. The method does not involve the discretization of the soil or piles and it follows the same analysis process and the content of stiffness matrix is just related to the number of pile and soil nodes under foundation cap. Comparison with the results of other analysis methods shows that the method is feasible and accurate.

Key words: piled raft foundation, rigid cap, displacement, side resistance force

CLC Number: 

  • TU 473.1
[1] SONG Yi-min, ZHANG Yue, XU Hai-liang, WANG Ya-fei, HE Zhi-jie. Study on creep-slip and stick-slip deformation evolution of rock based on non-uniform characteristics [J]. Rock and Soil Mechanics, 2020, 41(2): 363-371.
[2] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[3] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[4] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[5] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[6] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
[7] XU Zi-gang, DU Xiu-li, XU Cheng-shun, HAN Run-bo, QIAO Lei. Research on generalized response displacement method for seismic analysis of underground structures with complex sections [J]. Rock and Soil Mechanics, 2019, 40(8): 3247-3254.
[8] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[9] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[10] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
[11] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[12] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[13] LU Hua-xi, XU Lu-yao, LIANG Ping-ying, WU Bi-tao. Influence of hill on railway environmental vibration [J]. Rock and Soil Mechanics, 2019, 40(4): 1561-1568.
[14] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[15] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[3] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[4] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[5] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] JIANG Quan ,FENG Xia-ting ,ZHOU Hui ,ZHAO Yang , XU Ding-ping ,HUANG Ke ,JIANG Ya-li. Discussion of strength value for interlayer shear belt[J]. , 2011, 32(11): 3379 -3386 .
[8] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[9] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[10] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .