›› 2009, Vol. 30 ›› Issue (4): 890-896.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic response of rough pavement on Kelvin foundation subjected to traffic loads

YAO Hai-lin1,LU Zheng1,LUO Hai-ning2,YANG yang1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Chinese Changhang Group Inc, Wuhan 430014, China
  • Received:2008-05-26 Online:2009-04-10 Published:2011-01-30

Abstract:

To evaluate the dynamic responses of rough pavement subjected to traffic loads, research is focused on the geometric roughness of pavement, and by regarding the pavement roughness as sine function and simplifying the quarter vehicle to a two DOF vibration system, the dynamic loads expressions of the system are obtained and used to analyze the steady-state responses of infinite rough pavement on Kelvin foundation. The theoretical solutions of vertical displacement of the pavement are derived using the double Fourier transform, and the solutions can be degenerated to the corresponding classical solution of static problem. By employing fast Fourier transform (FFT), the numerical results are obtained and used to analyze the influence of moving load velocity, rough pavement parameters and foundation parameters on the dynamic displacement responses. Computed results show that the distribution and variation of pavement’s vertical displacement are influenced by load moving velocity. Two peaks of the deflection can be observed with increase of the rough pavement wavelength and the load velocity because of resonance. The lag effect of maximum displacement caused by pavement roughness becomes strong with the decrease of rough pavement wavelength and the increase of rough pavement amplitude.

Key words: traffic loads, rough pavement, double Fourier transform, dynamic response

CLC Number: 

  • U 416
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[4] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[5] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[6] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[7] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[8] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[9] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[10] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[11] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[12] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[13] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[14] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[15] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhen-jun,WANG Shui-lin,TANG Hua,WANG Wei,GE Xiu-run. A new optimization approach for slope reliability analysis[J]. , 2010, 31(3): 713 -718 .
[2] LI Xin-ping, DAI Yi-fei, LIU Jin-huan, ZENG Ming , LIU Li-sheng, ZHANGKai-g. Test study and numerical simulation analysis of explosion in steel tubes[J]. , 2009, 30(S1): 5 -9 .
[3] CAO Wen-gui,ZHAO Heng,ZHANG Yong-jie,ZHANG Ling. Strain softening and hardening damage constitutive model for rock considering effect of volume change and its parameters determination method[J]. , 2011, 32(3): 647 -654 .
[4] ZHANG Ping, FANG Ying-guang, YAN Xiao-qing, HE Zhi-wei1. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. , 2011, 32(S1): 388 -0391 .
[5] HUANG Xiao-lan , YANG Chun-he , CHEN Feng , LI Yin-ping , LI Ying-fang. Tightness evaluation test on underground energy storage in bedded salt rock formation of Qianjiang area[J]. , 2011, 32(5): 1473 -1478 .
[6] YE Fei , HE Chuan , WANG Shi-min. Analysis of mechanical characteristic of shield tunnel segments lining and its influence during construction[J]. , 2011, 32(6): 1801 -1807 .
[7] XU Fu-le ,WANG En-yuan ,SONG Da-zhao ,SONG Xiao-yan ,WEI Ming-yao. Long-range correlation and multifractal distribution of acoustic emission of coal-rock[J]. , 2011, 32(7): 2111 -2116 .
[8] NIU Lei, YAO Yang-ping, CUI Wen-jie, WAN Zheng. Three-dimensional method for constitutive relationship of overconsolidation unsaturated soil[J]. , 2011, 32(8): 2341 -2345 .
[9] KONG Ling-wei, LI Xin-ming, TIAN Hu-nan. Effect of fines content on permeability coefficient of sand and its correlation with state parameters[J]. , 2011, 32(S2): 21 -26 .
[10] HSIAO Fu-yuan , WANG Chien-li , SHAO How-jei. Mechanical parameters estimation and tunnel deformation study for brittle rock under high overburden condition[J]. , 2011, 32(S2): 109 -114 .