›› 2009, Vol. 30 ›› Issue (S1): 148-154.

• Geotechnical Engineering • Previous Articles     Next Articles

Explorating computational method of designing the supporting structure of rock tunnel

YANG Zhen1, ZHENG Ying-ren2, ZHANG Hong1, WANG Qian-yuan1, XIAO An-bao3   

  1. 1. School of Sciences, Qingdao Technological University, Qingdao 266033, China; 2. Chongqing Geological Hazard Control Engineering Technology Research Center, Logistical Engineering University of PLA, Chongqing 400041, China; 3. China Construction Fifth Engineering Bureau, Changsha 410004, China
  • Received:2009-05-12 Online:2009-08-10 Published:2011-03-16

Abstract:

Based on model tests and mechanical calculation, destruction mechanisms and forms of tunnel are analyzed. Taking safety factors calculated by strength reduction finite element method as the stability criterion is put forward. The stability marks of all kinds of rock masses are put forward in all kinds of surrounding rock classifications. Based on the above, the stability marks of all kinds of rock masses, especially one kind of new quantitative symbol, which is using safety factors of rock masses in non-lined situation as quantitative symbol is proposed. Based on the given corresponding safety factors, the strength parameters of rock masses for improving the accuracy of the strength parameters are deduced. The computational methods of designing rock tunnel, calculating safety factor of rock masses and lining work by strength reduction FEM and FEM respectively are proposed. In addition, the numerical calculation to one Qingdao underground work is carried on, and the safety factors of rock masses and lining work are calculated respectively. The initial standards of designing rock tunnel is that after initial lining, the safety factor of the rock masses is not less than 1.15 to 1.2, and the safety factor of initial lining is not less than 1.3; the safety factor of the rock masses is greater than 1.25 and the safty factor of lining is greater than 2.0 to 2.4 after the second lining, which ensure the tunnel security during construction and operation

Key words: tunnel, stability of surrounding rock, strength parameter, safety factor, lining support structure, initial lining, secondary lining

CLC Number: 

  • TU 354
[1] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[2] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[3] YANG Zhen-xing, CHEN Jian, SUN Zhen-chuan, YOU Yong-feng, ZHOU Jian-jun, LÜ Qian-qian, . Experimental study on improved seawater slurry for slurry shield [J]. Rock and Soil Mechanics, 2020, 41(2): 501-508.
[4] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[5] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[6] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[7] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[8] LI Zhi-cheng, FENG Xian-dao, SHENG Li-long, . Experimental study of deformation characteristics of pebble cushion with furrow for immersed tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 189-194.
[9] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[10] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[11] DING Zhi, ZHANG Xiao, JIN Jie-ke, WANG Li-zhong, . Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423.
[12] CHEN Wu, ZHANG Guo-hua, WANG Hao, CHEN Li-biao, . Risk assessment of mountain tunnel collapse based on rough set and conditional information entropy [J]. Rock and Soil Mechanics, 2019, 40(9): 3549-3558.
[13] ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, WANG Shuai, LUO Rong, FAN Lei. Review of bearing capacity and deformation characteristics of tunnel- type anchorage for suspension bridge [J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
[14] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[15] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[2] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[3] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[4] WU Zhi-jian, CHE Ai-lan, MA Wei, FENG Shao-kong, SHI Hang. Application study of transient surface wave survey on embankment in permafrost regions[J]. , 2010, 31(S2): 335 -341 .
[5] LIU Quan-sheng, HU Yun-hua, LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. , 2009, 30(2): 289 -296 .
[6] JIN Zhi-ren,HE Ji-shan. Optimization of supporting plan for deep foundation pit based on distance discriminant analysis method[J]. , 2009, 30(8): 2423 -2430 .
[7] WANG Guo-bo,MA Xian-feng,YANG Lin-de. Three-dimensional seismic response analysis of metro station structures and tunnels in soft soil[J]. , 2009, 30(8): 2523 -2528 .
[8] ZHANG Yu-min, SHENG Qian, ZHANG Yong-hui, ZHU Ze-qi. Artificial simulation of nonstationary artificial seismic motion for large-scale underground cavern group located in alpine gorge area[J]. , 2009, 30(S1): 41 -46 .
[9] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[10] DU Yan-jun, FAN Ri-dong. Compressibility and permeability behavior of two types of amended soil-bentonite vertical cutoff wall backfills[J]. , 2011, 32(S1): 49 -54 .