›› 2009, Vol. 30 ›› Issue (S2): 196-199.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of specimen-preparing methods on tensile strength of remolded loess

HU Hai-jun 1, 2, JIANG Ming-jing 1, 2, ZHAO Tao1, PENG Jian-bing3, LI Hong3   

  1. 1.Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3.School of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China
  • Received:2009-08-18 Online:2009-08-10 Published:2011-06-21

Abstract:

Effects of two specimen-preparing methods on tensile strength of remolded loess are studied. The first method adopts standard layered-bumping to make sample whose layer interfaces are vertical to tensile force (sample 1). The second method uses compaction apparatus to prepare big sample and the big sample is cut to prepare triaxial sample whose layer interface is parallel to tensile force (sample 2). Test results indicate that the sample 2 has higher tensile strength; and layer surfaces in sample 1 decrease its tensile strength.

Key words: remolded loess, specimen-preparing technique, tensile strength, layer interfaces

CLC Number: 

  • TU 411
[1] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[2] JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, . Experimental investigations on tensile cracking mechanical characteristics of gravelly core material [J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782.
[3] GAO Gui-yun, WANG Cheng-hu, WANG Chun-quan,. Optimal size range study of rock specimen for double concentric annular core direct tensile test [J]. , 2018, 39(S1): 191-202.
[4] LIU Yue-dong, LIN Jian, FENG Yan-jun, SI Lin-po,. Research on tensile strength of rock based on hydraulic fracturing method [J]. , 2018, 39(5): 1781-1788.
[5] TENG Shang-yong, YANG Sheng-qi, HUANG Yan-hua, TIAN Wen-ling, . Experimental study of influence of crack filling on mechanical properties of Brazilian discs [J]. Rock and Soil Mechanics, 2018, 39(12): 4493-4507.
[6] WU Qiu-hong, ZHAO Fu-jun, LI Xi-bing, WANG Shi-ming, WANG Bin, ZHOU Zhi-hua,. Mechanical properties of ring specimens of sandstone subjected to diametral compression [J]. , 2018, 39(11): 3969-3975.
[7] WANG Jiao, SHAO Sheng-jun, CHEN Pan,. Experimental study of soil water properties, compression yield and collapse deformation of unsaturated remolded loess [J]. , 2017, 38(S2): 217-222.
[8] LUO Han, LI Rong-jian, LIU Jun-ding, HUO Xü-ting, ZHANG Zhen, SUN Ping,. Comparison of active earth pressure formulations of loess based on joint strength [J]. , 2017, 38(7): 2080-2086.
[9] CUI Meng, HAN Shang-yu, HONG Bao-ning,. Development and application of a new geotechnical device for direct tension test [J]. , 2017, 38(6): 1832-1840.
[10] DU Jian-guo, GUO Shi-xu, CHEN Pei, GUO Qing-lin, CHEN Jin-yang, YU Shang-jiang,. Experimental study of crack initiation in wall-paintings of Mogao Grottoes [J]. , 2017, 38(1): 19-25.
[11] GUO Xiang, WANG Xue-bin, BAI Xue-yuan, WANG Chun-wei, QI Da-lei,. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method [J]. , 2017, 38(1): 214-220.
[12] LI Hao-da, TANG Chao-sheng, XU Qi-liang, LIU Chang-li, LENG Ting, SHI Bin. Advances in experimental testing methods of soil tensile strength [J]. , 2016, 37(S2): 175-186.
[13] SHI Bo-yi ,NI Wan-kui ,WANG Yan-hui ,LI Zheng-zheng ,YUAN Zhi-hui,. A model for calculating the compressive deformation of remolded loess [J]. , 2016, 37(7): 1963-1968.
[14] YUAN Wei,HAO Xiao-tian,LI Xiao-chun,BAI Bing,WANG Wei,CHEN Xiang-jun,JI Xiao-lei. A strength reduction method considering reduction of strength parameters coordinating with deformation parameters [J]. , 2016, 37(7): 2096-2100.
[15] HUANG Zhong-wei , WEI Jiang-wei , LI Gen-sheng , CAI Cheng-zheng,. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing [J]. , 2016, 37(3): 694-700.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
[10] XI Ren-shuang, CHEN Cong-xin, XIAO Guo-feng, HUANG Ping-lu. Study of influence of discontinuities on rock movement and surface deformation in eastern area of Chengchao iron mine[J]. , 2011, 32(S2): 532 -538 .