›› 2010, Vol. 31 ›› Issue (1): 233-236.

• Geotechnical Engineering • Previous Articles     Next Articles

An observation and analysis of passenger dedicated line subgrade in collapsible loess zone

XU Xing-wang,LI Xiao-lun   

  1. Geological Prospecting & Roadbed Design Department of China Railway First Survey and Design Institute Group Ltd, Shanxi Xi’an 710043, China
  • Received:2009-07-18 Online:2010-01-10 Published:2010-02-02

Abstract:

Zhengzhou-Xi'an Passenger Dedicated Line is the speed of loess area of China's first 300 ~ 350km / h without the laying of high-speed railway track ballast, subgrade settlement control is to ensure that high-speed railway operational safety an important factor. Zhengzhou-Xi'an Passenger Dedicated on-site through the settlement observation data analysis, we found a smaller settlement control of loess foundation required in the circumstances with a completion time is shorter, the settlement trends are consistent with hyperbolic analysis, laid on the roadbed over the central part of the settlement plates laid on the shoulder observation of pile settlement curve fitting is good, there are lots of cutting smaller settlement in its society,These results for high-speed passenger rail line Observation Design of Embankment Settlement great value.

Key words: loess, ballastless track, settlement observation, collapsibility, observation section

CLC Number: 

  • U 45
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[4] TANG Guo-yi, LIU Zhi, LIU Zheng-hong, TANG Li-jun, YU Yong-tang, JIANG Wen, . Application of low energy level dynamic compaction method to Angola Quelo sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 203-209.
[5] LIU Hua, ZHANG Shuo-cheng, NIU Fu-jun, SHAO Zhu-shan, NIU Ze-lin, LU Jie, . Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions [J]. Rock and Soil Mechanics, 2019, 40(S1): 210-216.
[6] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[7] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[8] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[9] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[10] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[11] CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, . Relationship between saturation degree and B value for loess [J]. Rock and Soil Mechanics, 2019, 40(3): 834-842.
[12] ZHANG Yu-wei, WENG Xiao-lin, SONG Zhan-ping, XIE Yong-li, . A modified Cam-clay model for structural and anisotropic loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038.
[13] WANG Li-qin, SHAO Sheng-jun, WANG Shuai, ZHAO Cong, SHI Peng-xin, ZHOU Biao, . Compression curve characteristic of undisturbed loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1076-1084.
[14] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[15] WANG Dao-yuan, YUAN Jin-xiu, ZHU Yong-quan, LIU Jia, WANG Hong-fan, . Model test study of deformation characteristics and reasonable reserved deformation of shallow-buried loess tunnel with hard-flow plastic [J]. Rock and Soil Mechanics, 2019, 40(10): 3813-3822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiang, LIU Yao-ru, LENG Kuang-dai, Lü Qing-chao, YANG Chun-he. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. , 2009, 30(12): 3553 -3561 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[8] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[9] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .