›› 2010, Vol. 31 ›› Issue (1): 246-252.

• Numerical Analysis • Previous Articles     Next Articles

Back analysis of three-dimensional initial geostress Laxiwa underground powerhouse

YAO Xian-chun1,LI Ning1, 2,QU Xing1,SUN Hong-chao1,JING Mao-gui1   

  1. 1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; 2. State Key Laboratory of Frozen Soil Engineering, CAREERI, Chiness Academy of Sciences, Lanzhou 730000, China
  • Received:2009-09-21 Online:2010-01-10 Published:2010-02-02

Abstract:

Laxiwa Hydropower station is located in a high mountain valley and narrow valleys, where the regional geostress field is higher. Besides, local existence of tectonic fracture zone and size of large-scale excavation are common phenomena in this project. The surrounding rock of hydropower plant is mainly granite, which are hard and brittle rock, this kind of rock is very detrimental to the stability of the cavern. In order to judge the stability of surrounding rock after excavation and long-term security of support design, it is need for obtaining mechanical parameters of surrounding rock mass and the initial stress field. Based on the measured values of the initial stress in-situ, rock tectonic stress field distribution of large-scale rock mass is obtained through back analysis; then using displacement of the key point, measured at the top of stratified cave excavation disturbance, obtain the more accurate three-dimensional stress distribution results. For follow-up excavation of underground powerhouse, evaluation and prediction of stability of surrounding rock and long-term safety of support design, the basic data are provided for effectively guiding the following excavation of plant. Displacements of surrounding rock after the completion excavation obtained by using rock mass stress field parameters of the plant are consistent with the actual monitoring results of surrounding rock displacement; it is shown that the geostress field back analysis results are consistent with the actual values of the geostresses.

Key words: underground cavern group, high geostress, back analysis, Laxiwa Hydropower Station

CLC Number: 

  • TU 443
[1] LI Lian-xiang, LIU Jia-dian, LI Ke-jin, HUANG Heng-li, JI Xiang-kai, . Study of parameters selection and applicability of HSS model in typical stratum of Jinan [J]. Rock and Soil Mechanics, 2019, 40(10): 4021-4029.
[2] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[3] DONG Zhi-hong, NIU Xin-qiang, DING Xiu-li, WENG YongHong, HUANG Shu-ling, PEI Qi-tao, ZHANG Lian, . Deformation characteristics and feedback analysis of surrounding rock of underground powerhouse at left bank of Wudongde Hydropower Station [J]. Rock and Soil Mechanics, 2018, 39(S2): 326-336.
[4] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
[5] WANG Shao-jie, LU Ai-zhong, ZHANG Xiao-li. Analytical method of displacement back analysis for horseshoe tunnel excavated in transverse isotropic rock mass [J]. , 2018, 39(S1): 495-504.
[6] LI Jian-peng, NIE Qing-ke, LIU Quan-sheng, YU Jun-chao,. Risk assessment method of karst ground collapse based on weight back analysis [J]. , 2018, 39(4): 1395-1400.
[7] WANG Hong-bo, ZHANG Qing-song, LIU Ren-tai, LI Shu-cai,ZHANG Le-wen, ZHENG Zhuo, ZHANG Lian-zheng. Inverse analysis of seepage field from packer permeability test [J]. , 2018, 39(3): 985-992.
[8] MENG Wei, HE Chuan, WANG Bo, ZHANG Jun-bo, WU Fang-yin, XIA Wu-yang. Two-stage back analysis of initial geostress field in rockburst area based on lateral pressure coefficient [J]. , 2018, 39(11): 4191-4200.
[9] TIAN Mao-lin, XIAO Hong-tian, YAN Qiang-gang,. Displacement back analysis of rock parameters of Hoek-Brown criterion using nonlinear regression method [J]. , 2017, 38(S1): 343-350.
[10] YUAN Yan-ling, GUO Qin-qin, ZHOU Zheng-jun, WU Zhen-yu, CHEN Jian-kang, YAO Fu-hai,. Back analysis of material parameters of high core rockfill dam considering parameters correlation [J]. , 2017, 38(S1): 463-470.
[11] ZHANG She-rong, HU An-kui, WANG Chao, PENG Zhen-hui, . Three-dimensional intelligent inversion method for in-situ stress field based on SLR-ANN algorithm [J]. , 2017, 38(9): 2737-2745.
[12] ZHENG Ya-fei, ZHANG Lu-lu, ZHANG Jie, ZHENG Jian-guo, YU Yong-tang,. Multi-objective probabilistic inverse analysis of rainfall-induced landslide based on time-varied data [J]. , 2017, 38(11): 3371-3377.
[13] ZHANG Zhi-zeng , LI Xiao-chang , WANG Ke-zhong,. Uniqueness of displacement back analysis of circular tunnel in transversely isotropic rock mass when considering shear stress [J]. , 2016, 37(S2): 449-460.
[14] WANG Kai-he, LUO Xian-qi, SHEN Hui, ZHANG Hai-tao. GSA-BP neural network model for back analysis of surrounding rock mechanical parameters and its application [J]. , 2016, 37(S1): 631-638.
[15] XIAO Jun-hua, ZHAO Xi-hong,. Observation and back analysis of settlement of piled-raft foundation in soft soil [J]. , 2016, 37(6): 1680-1688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .