›› 2010, Vol. 31 ›› Issue (2): 461-470.

• Geotechnical Engineering • Previous Articles     Next Articles

3-D scattering of plane P waves by a circular-arc alluvial valley

LIANG Jian-wen1, WEI Xin-lei1, Vincent W LEE2   

  1. 1. Department of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Department of Civil Engineering, University of Southern California, CA 90089, U. S. A.
  • Received:2008-08-05 Online:2010-02-10 Published:2010-03-24

Abstract:

The 3-D scattering of plane P waves by circular arc alluvial valleys is studied. The circular surface assumption is used to simulate half-space surface; and the wave function expansion method is used to give the analytical solution in frequency domain. Based on the solution, the effects of the incident frequency and incident angle of plane P waves on the dynamic response of circular arc alluvial valley are discussed. The numerical results show that the surface displacement amplitudes significantly depend on the incident angle and the incident frequency of the incident P waves.

Key words: three-dimensional scattering, plane P waves, circular arc alluvial valley, analytical solution

CLC Number: 

  • TU411.8
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[3] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[4] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[5] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[6] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[7] HUANG Chao-xuan. Research on nonlinear consolidation calculation of foundation treated with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(12): 4819-4827.
[8] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[9] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[10] WANG Shuai-shuai, GAO Bo, FAN Kai-xiang, SHEN Yu-sheng, ZHANG Tao,. Damping mechanism of shallow cylindrical parallel tunnel with grouting reinforcement zone [J]. , 2018, 39(2): 683-690.
[11] ZHANG Bing-qiang, WANG Qi-yun, LU Xiao-ying, . Analytical solution for non-Darcian seepage field of a shallow circular tunnel in soft soil [J]. Rock and Soil Mechanics, 2018, 39(12): 4377-4384.
[12] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[13] HU Zhi-feng, CHEN Jian, QIU Yue-feng, LI Jian-bin, ZHOU Xing-tao, . Analytical formula for ground settlement induced by horizontal movement of retaining wall [J]. , 2018, 39(11): 4165-4175.
[14] LI Chuan-xun, WANG Su. An analytical solution for one-dimensional nonlinear consolidation of soft soil [J]. , 2018, 39(10): 3548-3554.
[15] ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng, LI Yong-hui,. Analysis of stress and displacement characteristics of bridge pile and pier adjacent to one-side loading [J]. , 2017, 38(9): 2683-2692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .