›› 2010, Vol. 31 ›› Issue (5): 1539-1544.

• Geotechnical Engineering • Previous Articles     Next Articles

A method for determining critical thickness of base soil of foundation pit subjected to confined water

WANG Yu-lin 1, 2, XIE Kang-he1, LU Meng-meng1, WANG Kun1   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China; 2. Department of Civil Engineering and Architecture, Wuyi University, Wuyishan Fujian, 354300, China
  • Received:2009-07-15 Online:2010-05-10 Published:2010-05-24

Abstract:

The change of pore water pressure and soil effective stress in foundation pit base, subjected to fast increase of confined water pressure due to sudden rise of the influent river during flood peak, have been analyzed. Based on soil permeability and its two damage mechanisms (i.e. tensile failure and shear failure), a new method for determining critical thickness of base plate of foundation pit is presented based on elastic theory. The new method is compared with traditional method to calculate the critical thickness of base soil of foundation pit by case study. Results show that the new method considering indices cu, ?u, and the size of foundation pit base, is more reasonable than the traditional method. However, the results calculated by the method in this paper reduce to the results by traditional method as for highly permeable soil like sand.

Key words: confined aquifer, effective stress, damage patterns, critical thickness, elastic mechanics

CLC Number: 

  • TV 139.1
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[3] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[4] MAO Xiao-long, LIU Yue-tian, GUAN Wen-long, REN Xing-nan, FENG Yue-li, DING Zu-peng, . An effective stress equation for pore volume strain [J]. Rock and Soil Mechanics, 2019, 40(8): 3004-3010.
[5] CAO Hong, HU Yao, LUO Guan-yong. Research on approximate calculation method for incomplete wells with filter screen ends away from the confined aquifer level [J]. Rock and Soil Mechanics, 2019, 40(7): 2774-2780.
[6] YUAN Wei, LIU Shang-ge, NIE Qing-ke, WANG Wei, . An approach for determining the critical thickness of the karst cave roof at the bottom of socketed pile based on punch failure mode [J]. Rock and Soil Mechanics, 2019, 40(7): 2789-2798.
[7] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[8] CHEN Yu-min, CHEN Run-ze, HUO Zheng-ge, . Study of flow deformation of saturated suspended plastic sand by visualized ring shear tests [J]. Rock and Soil Mechanics, 2019, 40(10): 3709-3716.
[9] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[10] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[11] PENG Zu-zhao, FENG Kun, XIAO Ming-qing, HE Chuan, JIANG Chao, CHEN Huai-wei,. Reasonable overlying thickness of subaqueous tunnels based on pressure arch theory [J]. , 2018, 39(7): 2609-2616.
[12] ZHANG Tian-jun, SHANG Hong-bo, LI Shu-gang, WEI Wen-wei, BAO Ruo-yu, PAN Hong-yu,. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states [J]. , 2018, 39(7): 2361-2370.
[13] WANG Guan-shi, XIONG Peng, HU Shi-li, MENG Shi-ming, LONG Ping, TAN Tan,. Application of displacement discontinuity model for calculating the viscoelastic stiffness of joints [J]. , 2018, 39(6): 2175-2183.
[14] CHEN Wei-zhong, MA Yong-shang, YU Hong-dan, GONG Zhe, LI Xiang-ling,. Parameter sensitivity analysis for thermo-hydro-mechanical coupling model of clay tunnel for radioactive waste disposal [J]. , 2018, 39(2): 407-416.
[15] LI Lin, LI Jing-pei, ZHAO Gao-wen, CUI Ji-fei, . Time-dependent bearing capacity of a jacked pile based on the effective stress method [J]. Rock and Soil Mechanics, 2018, 39(12): 4547-4553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] TAN Han-hua, FU He-lin. Testing study of application of time domain reflectometry to highway slope monitoring[J]. , 2010, 31(4): 1331 -1336 .
[3] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[4] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[5] ZHANG Zhi-qiang, HE Ben-guo, HE Chuan. Study of load of lining under condition of saturated stratum for underwater tunnels[J]. , 2010, 31(8): 2465 -2470 .
[6] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[7] YU Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J]. , 2010, 31(10): 3280 -3285 .
[8] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[9] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[10] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .