›› 2010, Vol. 31 ›› Issue (9): 2925-2929.

• Geotechnical Engineering • Previous Articles     Next Articles

Application of stepwise discriminant analysis to screening evaluation factors of debris flow

MENG Fan-qi,LI Guang-jie,LI Ming,MA Jian-quan,WANG Qian   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2009-11-20 Online:2010-09-10 Published:2010-09-16

Abstract:

Screening multiple factors according to their contribution to the debris flow is carried out based on the principle of stepwise discriminant analysis. And then the weights for screened evaluation factors are determined based on improved analytic hierarchy process; so that judgment matrix can meet the consistency requirements, avoiding the high-subjectivity in adjusting the judgment matrix during post-test. The site-specific debris flow risk is evaluated with example verification based on the screening and weight determining of evaluation factors. The results show that the screened factors actually reflect local debris flow risk; and they are closer to the actual situation comparing to traditional methods.

Key words: stepwise discriminant analysis, evaluation factor, screening, improved analytic hierarchy process, debris flow

CLC Number: 

  • P 694
[1] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[2] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[3] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[4] WANG You-biao, YAO Chang-rong, LIU Sai-zhi, LI Ya-dong, ZHANG Xun. Experimental study of debris flow impact forces on bridge piers [J]. Rock and Soil Mechanics, 2019, 40(2): 616-623.
[5] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[6] CHEN Xing-zhang, CHEN Hui, YOU Yong, LIU Jin-feng,. Experiment on distribution and influence factors of uplift pressure acting on bottom of debris flow check dam [J]. , 2018, 39(9): 3229-3236.
[7] DU Guo-liang, ZHANG Yong-shuang, YAO Xin, GUO Chang-bao, YANG Zhi-hua,. Formation mechanism analysis of Wulipo landslide-debris flow in Dujiangyan city [J]. , 2016, 37(S2): 493-501.
[8] HU Xie-wen, DIAO Ren-hui, LIANG Jing-xuan, LUO Gang, WEI Lai,. Prediction of the scope of Jiangkou gully debris flow hazard using CFX software [J]. , 2016, 37(6): 1689-1696.
[9] FEI Jian-bo, JIE Yu-xin, ZHANG Bing-yin, FU Xu-dong. Application of a three-dimensional yield criterion to granular flow modeling [J]. , 2016, 37(6): 1809-1817.
[10] YANG Jin-bing, CHEN Xing-zhang, WANG Hui, TIAN Xiao-ping, JIA Li-rong. An experimental study of relationship between fine grain content and permeability coefficient of debris flow deposits [J]. , 2016, 37(11): 3184-3190.
[11] JI Xian-jun , LIANG Ying , OU Guo-qiang , YANG Shun , WANG Jun , LU Gui-hong,. Numerical simulation and verification about viscous debris motion process on slope [J]. , 2015, 36(8): 2402-2408.
[12] ZENG Chao ,SU Zhi-man ,LEI Yu ,YU Jian,. An experimental study of the characteristics of impact forces between debris flow slurry and large-sized particles [J]. , 2015, 36(7): 1923-1930.
[13] HE Na , CHEN Ning-sheng , ZHU Yun-hua , YANG Jian-yuan , YANG Cheng-lin,. Experiment study of fractal feature and relationship between fractal dimension and permeability coefficient of gravelly soil in debris flow source area [J]. , 2014, 35(9): 2543-2548.
[14] XU Lin-rong, CHEN Shu-yang, CAO Lu-lai. Engineering vulnerability assessment for bridges and tunnels harmed by debris flow hazards [J]. , 2014, 35(9): 2642-2650.
[15] ZHAO Yan-bo , YOU Yong , LIU Jin-feng , CHEN Xing-chang,. Study of gully bed erosion depth of viscous debris flow [J]. , 2014, 35(6): 1751-1755.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[2] YU Xiao-jun,SHI Jian-yong,XU Yang-bin. Modelling disturbed state and anisotropy of natural soft clays[J]. , 2009, 30(11): 3307 -3312 .
[3] XU Bin,YIN Zong-ze,LIU Shu-li. Experimental study of factors influencing expansive soil strength[J]. , 2011, 32(1): 44 -50 .
[4] YANG Yang, YAO Hai-lin, LU Zheng. Model of subgrade soil responding to change of atmosphere under evaporation and its influential factors[J]. , 2009, 30(5): 1209 -1214 .
[5] TANG Chao-sheng,SHI Bin,GAO Wei,LIU Jin. Single fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. , 2009, 30(8): 2225 -2230 .
[6] CHU Xi-hua. A generation method for numerical specimen of granular materials by sort of coordinates[J]. , 2011, 32(9): 2852 -2855 .
[7] WANG Zhong-fu , LIU Han-dong , JIA Jin-lu , HUANG Zhi-quan , JIANG Tong . Experimental study of vertical bearing capacity behavior of large-diameter bored cast-in-situ long pile[J]. , 2012, 33(9): 2663 -2670 .
[8] LIN Lu-sheng , JIANG Gang , BEI Shi-wei , LIU Zu-de . Statistical analysis method of taking value for shear strength parameters of soil mass[J]. , 2003, 24(2): 277 -280 .
[9] DENG Chu-jian, ZHENG Ying-ren, ZHU Jian-kai. Formula of intermediate principal stress at failure for Mohr-Coulomb material in plane strain state[J]. , 2008, 29(2): 310 -314 .
[10] ZHOU Jian, CUI Ji-hong, JIA Min-cai, SHI Dan-da. In-situ test study on ground treatment of hydraulic fine soils[J]. , 2008, 29(4): 859 -864 .