›› 2011, Vol. 32 ›› Issue (4): 1083-1088.

• Geotechnical Engineering • Previous Articles     Next Articles

Stress monitoring and analysis of gravelly soil corewall in high rockfill dam during construction

CHEN Xiang-hao,DENG Jian-hui,CHEN Ke-wen,ZHENG Jun,MENG Fan-li,XU Liang   

  1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
  • Received:2010-03-19 Online:2011-04-10 Published:2011-04-29

Abstract:

For the high rockfill dam, whether too low vertical earth pressure or higher pore water pressure exists in the corewall or not has great significance for the security and stability of dam during construction as well as the impounding period. Combined with the construction schedule and procedure information, based on the monitoring data of gravelly soil core wall stress during the construction period, the soil pressure and pore water pressure in gravelly soil corewall during construction period are analyzed in time, space and effect factors respectively, with a view to improve design theory and construction measures of high rockfill soil corewall dam. Soil pressure primarily relates to soil bulk density, soil column thickness and the arching effect and symmetrically distributes along the dam axis. The strongest arching effect site is around the 1/3 height of corewall near the dam axis. At height with arching effect, the soil pressure is hump-shaped distribution and the minimum soil pressure is near the dam axis. Pore water pressures primarily relate to soil pressure and water content. At the dam filling process, to avoid the generation of excessive pore water pressure and reduce the impact of arching effect, the water content of the corewall material and the upper and lower dam shell should be strictly controlled.

Key words: gravelly soil corewall, pore water pressure, soil pressure, arching effect, hydraulic fracturing, monitoring

CLC Number: 

  • TV 641.4
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[3] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[4] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[5] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[6] ZHENG Shuai, JIANG An-nan, ZHANG Feng-rui, ZHANG Yong, SHEN Fa-yi, JIANG Xu-dong, . Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318.
[7] LI Qiao, MENG Fan-zeng, NIU Yuan-zhi. Bridge pier deformation and control technology of jacking framed bridge with loading under crossing high speed railway [J]. Rock and Soil Mechanics, 2019, 40(9): 3618-3624.
[8] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[9] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[10] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[11] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[12] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[13] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[14] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[15] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[4] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[5] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[6] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[7] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[8] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[9] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .
[10] WANG Yu ,JIA Zhi-gang ,LI Xiao ,WANG Can ,YU Hong-ming . Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. , 2012, 33(6): 1795 -1800 .