›› 2011, Vol. 32 ›› Issue (S1): 247-252.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Slope stability analysis based on nonlocal method

WANG Xiao-ping, FENG Jin-cai   

  1. Institute of Geotechnical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
  • Received:2011-01-11 Online:2011-05-15 Published:2011-05-16

Abstract: Strain localization is a very important subject in rock and soil mechanics; the influence of strain localization on slope stability must be considered. Considering the combination of two kinds of regularization mechanisms, this paper applied the nonlocal model method to elasto-viscoplastic constitutive model, and carried out slope stability analysis based on finite element slip surface-stress method. The results of limit equilibrium method and slip surface-stress method based on linear elastic model were compared with the results from this paper’s method. The results show that the numerical result of this paper is rational and is instructive for engineering application.

Key words: strain localization, nonlocal method, slip surface-stress method, finite element method, slope stability

CLC Number: 

  • TU 457
[1] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[4] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[5] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[6] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[7] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[8] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[9] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[10] WANG Dong-yong, CHEN Xi, YU Yu-zhen, LÜ Yan-nan, . Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method [J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896.
[11] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[12] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[13] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[14] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[15] WANG Jie, GONG Jing-wei, ZHAO Ze-yin. Position, direction of strain localization of rock-like specimens under uniaxial compression and its application to early-warning [J]. Rock and Soil Mechanics, 2018, 39(S2): 186-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[6] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[7] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[8] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .