›› 2012, Vol. 33 ›› Issue (10): 3162-3170.

• Numerical Analysis • Previous Articles     Next Articles

Seismic response analysis of high-speed vehicle-bridge considering soil-structure interaction

CHEN Ling-kun1, 2,JIANG Li-zhong1, 3,TAO Lei4,YU Zhi-wu1, 3   

  1. 1. School of Civil Engineering, Central South University, Changsha 410075, China; 2. College of Civil Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; 3. National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha 410075, China; 4. College of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
  • Received:2011-06-21 Online:2012-10-10 Published:2012-10-19

Abstract: Based on the finite beam element method, two kinds of whole bridge models of high-speed railway multi-span simply-supported bridge are set up. One is vehicle-bridge model including pile foundation, the dynamic impedances of the layered soil are presented, the improved Penzien model is used to simulate the soil-structure interaction (SSI); the other is vehicle-bridge model where pier bottom is consolidated without considering SSI; the seismic responses of the models are computed at different vehicle speeds, pier heights, earthquake strengths and earthquake waves. The calculation results show that the influence of the SSI on seismic responses of high-speed vehicle-bridge on soft foundation can not be ignored; the lateral displacement and acceleration of the bridge are influenced by low-frequency components, those low-frequency components interact with the earthquake wave incident from bottom side of the piles, which change the spectrum composition of the foundation movement, the frequency components which approach to bridge vibration frequency are strengthened; the lateral displacement and acceleration of bridge increase a lot after considering SSI; the vertical vibration frequency of the bridge changes little while considering SSI; the vertical displacement of the boxing girder increases little with the increase of pier height and vehicle speed; the high-frequency components which are caused mainly by the vehicle load and the track irregularity significantly influenced on the vertical acceleration of the boxing girder

Key words: high-speed railway, vehicle-bridge system, seismic responses, soil-structure interaction

CLC Number: 

  • TU435
[1] LI Qiao, MENG Fan-zeng, NIU Yuan-zhi. Bridge pier deformation and control technology of jacking framed bridge with loading under crossing high speed railway [J]. Rock and Soil Mechanics, 2019, 40(9): 3618-3624.
[2] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
[3] SONG Hong-fang, YUE Zu-run, LI Bai-lin, ZHANG Song, . Thermal insulation and strengthening properties of anti-frost heaving subgrade structure of the high-speed railway in seasonally frozen soil region [J]. Rock and Soil Mechanics, 2019, 40(10): 4041-4048.
[4] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[5] LI Han-wen, ZHANG Lu-lu, FENG Shi-jin, ZHENG Wen-Tang,. Moisture migration in a high-speed railway embankment under complex atmospheric environment [J]. , 2018, 39(7): 2574-2582.
[6] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
[7] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
[8] LI Zhi-yuan, LI Jian-bo, LIN Gao, . Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM [J]. , 2018, 39(11): 4242-4250.
[9] XIE Tao, LUO Qiang, ZHOU Cheng, ZHANG Liang, JIANG Liang-wei, . Mechanical response of shoulder sheet-pile wall under strictly restricted deformation condition in steep ground along a high-speed railway [J]. , 2018, 39(1): 45-52.
[10] LI Xiao-jun, WANG Xiao-hui, LI Liang, HAN Jie,. Design and performance test of 3D laminar shear container for shaking table [J]. , 2017, 38(5): 1524-1532.
[11] LEI Su-su , GAO Yong-tao , PAN Dan-guang , . Equivalent input of soil-structure interaction system considering radiation damping [J]. , 2016, 37(S1): 583-590.
[12] WANG Zhi-jia, ZHANG Jian-jing, FU Xiao, YAN Kong-ming, . Isolated similar design method for a scaled model test and its application to slope-anchor cable-lattice beam system [J]. , 2016, 37(9): 2617-2623.
[13] QIU Ming-ming , YANG Xiao , YANG Guo-lin , FANG Yi-he,. Dynamic response of the new fully-enclosed cutting subgrade of Yun-Gui high-speed railway [J]. , 2016, 37(2): 537-544.
[14] LI Xue , ZHOU Shun-hua , WANG Pei-xin , LI Xiao-long,. Analysis of impact of isolation piles and shield tunnelling on adjacent high-speed railway pile foundation [J]. , 2015, 36(S1): 235-240.
[15] JIANG Ling-fa , XIONG Shu-dan , CHEN Shan-xiong , XU Xi-chang,. Model test study of velocity transfer law of high-speed railway subgrade under train load [J]. , 2015, 36(S1): 265-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .