›› 2012, Vol. 33 ›› Issue (2): 611-616.

• Numerical Analysis • Previous Articles     Next Articles

Study of damage localization of loess multi-arch tunnel’s surrounding rock under dynamic construction

ZHONG Zu-liang1, 2, 3, LIU Xin-rong1, 2, 3, LIU Yuan-xue3, LI Peng1, 2, WANG Ji-ming1, 2   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area of Education Ministry, Chongqing University, Chongqing 400045, China; 3. Department of Architecture and Civil Engineering, Logistical Engineering University, Chongqing 400041, China
  • Received:2011-04-01 Online:2012-02-10 Published:2012-02-14

Abstract: In order to study the damage distribution of tunnel’s surrounding rock, firstly, an elastoplastic damage constitutive model of Q2 loess is deduced based on triaxial shear tests and compiled as a user-defined damage model( UDM ) of FLAC3D. Then the conception of surrounding rock damage degree (SRDD) is put forward and compiled into a post-processing module. Based on the first loess multi-arch tunnel of road–Lishi tunnel, the damage position of tunnel’s surrounding rock of two construction schemes is numerically simulated. The research results show that the SRDD and damage localization rules can be simulated well at every excavation step; and it also provides reference for the optimization of tunnel construction scheme. The research results provide a new method for the optimization of tunnel construction scheme and choice of construction scheme.

Key words: constitutive model, damage degree, localization, plan optimization

CLC Number: 

  • TU 43
[1] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[2] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[3] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[4] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[5] YANG Dao-xue, ZHAO Kui, ZENG Peng, ZHUO Yu-long, . Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 494-502.
[6] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[7] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[8] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[9] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[10] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[11] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[12] SUN Yi-fei, CHEN Cheng, . A state-dependent stress-dilatancy equation without state index and its associated constitutive model [J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822.
[13] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
[14] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[15] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] CHEN Yun-ping, WANG Si-jing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading[J]. , 2010, 31(4): 1030 -1034 .
[3] CHEN Yu,ZHANG Qing-he,ZHU Ji-wen,YAO Hai-ming. Coupled fluid-mechanical analysis of DOT shield tunnel construction beneath adjacent existing underpass[J]. , 2010, 31(6): 1950 -1955 .
[4] JIA Qiang,ZHANG Xin. Numerical analysis of slab underpinning construction in development of underground space[J]. , 2010, 31(6): 1989 -1994 .
[5] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[6] LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Field response characteristic test of expansive soil engineering behavior under effect of atmosphere[J]. , 2009, 30(7): 2069 -2074 .
[7] SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao. Soil-water characteristic curves of two bentonites[J]. , 2011, 32(4): 973 -0978 .
[8] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[9] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .
[10] CHU Fu-yong ,ZHU Jun-gao ,JIA Hua ,AN Shu-hong. Experimental study of mechanical behaviour of coarse-grained soil in unloading and reloading[J]. , 2012, 33(4): 1061 -1066 .