›› 2012, Vol. 33 ›› Issue (4): 1151-1160.

• Geotechnical Engineering • Previous Articles     Next Articles

An advanced detection study of frequency domain induced polarization method for water-bearing structure of tunnel

NIE Li-chao,LI Shu-cai,LIU Bin,LI Shu-chen,ZHONG Shi-hang,SONG Jie,LIU Zheng-yu   

  1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
  • Received:2010-10-15 Online:2012-04-13 Published:2012-04-26

Abstract: The detection of water-bearing structures is the key problem needed to be resolved. Apparent percent frequency effect as one parameter of frequency domain induced polarization (IP) is sensitive to water. And frequency domain IP is introduced to water-bearing structure advanced detection in tunnel. Frequency domain IP on advanced detection about theoretical forward, physical simulation and interpretative method is researched systematically. Firstly, the problem of numerical forward on advanced detection of frequency domain IP is solved by using finite element method. The response pattern of apparent percent frequency effect to typical water-bearing structures is found by forward modeling systematically. The maximum of apparent percent frequency effect curve has important characteristics, for which water-bearing structures exist ahead of tunnel face. Secondly, the method of joint judging the location of water-bearing structures using two maximum of apparent percent frequency effect curves is put forward, basing on large number conclusions of numerical forward. At last, the physical model test and engineering application show that water-bearing structure location of advanced detection of frequency domain IP is almost in agreement with actual situation. Frequency domain IP is efficient in detecting water-bearing structures. And it provides a feasible approach to solve the problem of advanced detection of water-bearing structures

Key words: tunnel engineering, water-bearing structure, advanced detection, frequency domain induced polarization, numerical forward, physical model test

CLC Number: 

  • TU 443
[1] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[2] YU Zheng, YANG Long-cai, ZHANG Yong, ZHAO Wei, . Uncertainty analysis of tunnel surrounding rock deformation considering consistency of geological heterogeneity features [J]. Rock and Soil Mechanics, 2019, 40(5): 1947-1956.
[3] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[4] JIANG Qiang-qiang, JIAO Yu-yong, SONG Liang, WANG Hao, XIE Bi-ting, . Experimental study on reservoir landslide under rainfall and water-level fluctuation [J]. Rock and Soil Mechanics, 2019, 40(11): 4361-4370.
[5] WANG Jian-feng, LI Tian-bin, MA Chun-chi, ZHANG Hang, HAN Yu-xuan, ZHOU Xiong-hua, JIANG Yu-peng, . Gravitational search algorithm based microseismic positioning in tunnel surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(11): 4421-4428.
[6] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[7] GU Shuan-cheng, ZHOU Pan, HUANG Rong-bin. Stability analysis of tunnel supported by bolt-surrounding rock bearing structure [J]. , 2018, 39(S1): 122-130.
[8] LI Xiao-fei, SUN Jiang-tao, CHEN Wei-zhong, YUAN Jing-qiang, LIU Jin-quan, ZHANG Qing-yan,. Strength and anti-washout property of fiber silica fume cement grout [J]. , 2018, 39(9): 3157-3163.
[9] LIU Cong, LI Shu-cai, ZHOU Zong-qing, LI Li-ping, WANG Kang,HOU Fu-jin, QIN Cheng-shuai, GAO Cheng-lu,. Model test on mechanical characteristics of surrounding rock during construction process of super-large section tunnel in complex strata [J]. , 2018, 39(9): 3495-3504.
[10] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
[11] YANG Zhong-min, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, . Physical model test on large deformation mechanism and key treatment techniques of tunnel [J]. Rock and Soil Mechanics, 2018, 39(12): 4482-4492.
[12] GUO Hao-ran, QIAO Lan, LI Yuan. Research on the bearing performance of energy piles using an improved load-transfer model on pile-soil interface [J]. , 2018, 39(11): 4042-4052.
[13] TENG Jun-yang, ZHANG Yu-ning, TANG Jian-xin, ZHANG Chuang, LI Chen-lin, . Experimental study on shear behavior of jointed rock mass with anchorage mode [J]. , 2017, 38(8): 2279-2285.
[14] CAI Qiang, LI Qian-kun, SHI Sheng-wei, ZHANG Yong, . Study of mechanical characteristics of short anti-sliding steel pipe pile by physical model test [J]. , 2016, 37(S2): 679-684.
[15] JIN Lin, HU Xin-li, TAN Fu-lin, HE Chun-can, ZHANG Han, ZHANG Yu-ming. Model test of soil arching effect of anti-slide piles based on infrared thermal imaging technology [J]. , 2016, 37(8): 2332-2340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[2] SONG Jing,WANG Qing,SUN Tie,LI Xiao-ru,ZHANG Zhong-qiong,JIAO Zhi-liang. Laboratory research on variation mechanism of pore water pressure during stage of dead-weight sludging drainage of dredger fill[J]. , 2010, 31(9): 2935 -2940 .
[3] XIA Li-nong, LEI Ming, NIE Chong-jun. Field test of influences of load at pile top on negative skin friction behaviors[J]. , 2009, 30(3): 664 -668 .
[4] PAN Peng-zhi, FENG Xia-ting, ZHOU Hui. Failure evolution processes of brittle rocks using 3D cellular automaton method[J]. , 2009, 30(5): 1471 -1476 .
[5] CHEN Ming,LU Wen-bo,ZHOU Chuang-bing,LUO Yi. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation[J]. , 2009, 30(8): 2254 -2258 .
[6] HU Yun-shi, SU Hui, CHENG Yi-chong, AI Zhi-yong. State space solution to three-dimensional consolidation of layered rock with compressible constituents[J]. , 2011, 32(S1): 176 -180 .
[7] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[8] CHEN Jian-gong ,ZHOU Tao-tao ,ZHANG Yong-xing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. , 2011, 32(9): 2629 -2634 .
[9] CHEN Xu-guang , ZHANG Qiang-yong , DUAN Kang , LIU De-jun , ZHANG Ning . Research on application of optical sensor-based measuring method to model test[J]. , 2012, 33(5): 1409 -1415 .
[10] LIU Hai-ming , YANG Chun-he , ZHANG Chao , MAO Hai-jun , CAO Jing . Study of characteristics of power function Mohr strength criterion for tailings material under high pressures[J]. , 2012, 33(7): 1986 -1992 .