›› 2012, Vol. 33 ›› Issue (9): 2754-2758.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of mechanical properties of X-section cast-in-place concrete pile under arbitrary direction lateral load (I): moment of inertia

ZHOU Hang1, 2, KONG Gang-qiang1, 2, LIU Han-long1, 2, Thach Pham-Ngoc 1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2012-05-07 Online:2012-09-11 Published:2012-09-12

Abstract: X-section cast-in-place concrete pile (XCC pile) can save concrete usage under the same pile perimeter. However, there were relative little studies of the lateral bearing capacity affected by X sectional shape. Based on three key control sectional parameters (outsourcing diameter, open space, and open arc angle), the moment of inertia equation under arbitrary direction axis are built. Then, the moment of inertia influenced by sectional parameters are discussed. Finally, optimized X section type is proposed, of which the moment of inertia can be improved with the same areas or perimeter. The results show that, the moment of inertia increased with outsourcing diameter increasing, open arc degree decreasing, and open space decreasing. Hence, appropriate increase outsourcing diameter, and reduce opening angle and arc, can help improving the moment of inertia, thereby improving the overall bearing capacity of X-section cast-in-place concrete pile.

Key words: soft ground, lateral load, section geometric property, X-section cast-in-place concrete pile (XCC pile), moment of inertia

CLC Number: 

  • TU 473.1
[1] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[2] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[3] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[4] YU Hao-jun, PENG She-qin, ZHAO Qi-hua,. Research on response of laterally loaded pile in gravel soil sloping ground [J]. , 2018, 39(7): 2537-2545.
[5] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
[6] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. A parametric study of lateral displacement of support wall induced by foundation pre-dewatering in soft ground [J]. , 2017, 38(11): 3295-3303.
[7] ZENG Chao-feng, XUE Xiu-li, ZHENG Gang,. Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground [J]. , 2017, 38(10): 3039-3047.
[8] ZHU Yao-hong, XIA Han-yong, HU Zhi-fei,. An uplifting practice of shield tunnel in soft ground [J]. , 2016, 37(S2): 543-551.
[9] HUANG Guang-jun. Problems and their solutions in predicting soft ground settlement based on Asaoka’s method [J]. , 2016, 37(4): 1061-1065.
[10] CHEN Guo-xing , CHEN Su , ZUO Xi , QI Cheng-zhi , DU Xiu-li , WANG Zhi-hua , . Shaking table test on seismic response of subway station structure in soft ground [J]. , 2016, 37(2): 331-342.
[11] QIAN Zheng, WANG Kui-hua. Experimental study of lateral capacity of static drill rooted pile [J]. , 2015, 36(S2): 588-594.
[12] LIU Chun-yuan, ZHU Nan, ZHAO Xian-hui, WANG Wen-jing. Centrifugal test study of vacuum combined with surcharge preloading of lacustrine soft soil [J]. , 2015, 36(S1): 310-314.
[13] ZHAO Ning-yu , LIANG Bo , HUANG Feng , LIU Yi,. An analytical design method for loading berm of fill embankment [J]. , 2015, 36(10): 2914-2920.
[14] LI Wei-chao , YANG Min , ZHU Bi-tang,. Case study of p-y model for short rigid pile in sand [J]. , 2015, 36(10): 2989-2995.
[15] KONG Gang-qiang , ZHANG Chi , . Field test and numerical simulation of deformation characteristics of embankment on soft ground under different filling speeds [J]. , 2014, 35(S2): 343-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[7] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[8] HU Qi, LING Dao-sheng, CHEN Yun-min. Analytical method and engineering application of horizontal coefficients of subgrade reaction based on Melan’s solution[J]. , 2009, 30(1): 33 -39 .
[9] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[10] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .