›› 2013, Vol. 34 ›› Issue (5): 1331-1339.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

In-situ test research on regularities of water migration in loess

LI Ping1,LI Tong-lu1,WANG A-dan2,ZHANG Ya-guo2,LIANG Yan3,ZHAO Ji-fei1   

  1. 1. Department of Geological Engineering, School of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Key Laboratory of Education Ministry on Highway Engineering of Special Region, School of Highway, Chang’an University, Xi’an 710064, China
  • Received:2012-07-05 Online:2013-05-10 Published:2013-05-14

Abstract: It is an indisputable fact that rainfall can induce landslides in loess area; however, groundwater levels are always very deep in loess area. At present, it is not clear that how does rainfall move in loess and whether it affects groundwater directly when infiltrating ground below. In order to simulate the natural rainfall condition, manual drip experiment is carried out. By using soil moisture meters which are inserted into the wall at a 10 m-deep exploratory well, the changes of moisture content with time of soil layers at different depths in the process of artificial rainfall infiltration could be easily observed; the range affected by rainfall could be confirmed later. The result shows that moisture content of soil layers within 0.5 m changed obviously when the precipitation is 3.82 mm/d (light rain), while that of below have almost no changes; the moisture content within 1 m increases when the precipitation is 10.31 mm/d (moderate rain); the moisture content of the layers within 1 m increases significantly, and that of between 1 m to 1.6 m have a slight rise when the precipitation reached 25.21 mm/d (heavy rain), the changes of moisture content lag and the growth decreases gradually with depth. It is shown that if there are no obvious water paths in arid loess region, the infiltration depth of short-term rainfall is limited and it is difficult to reach the groundwater level, but according to the results of paleosol in deeper, the moisture content of paleosol has a considerable increase even though that of upper loess is relatively weak, which indicates that unsaturated seepage or vapor migration do exist in loess. It is also found that the circulation of soil moisture is primarily occurred in evaporation zone; that within shallow 0.7 m in Longdong Loess Plateau, if there is no recharge from follow-up rainfall, the rainfall infiltrated within evaporation zone will be excreted upward by evaporation; however, it will continue to move downward without the influence of evaporation when infiltrating beyond the evaporation zone; the water will gather on the surface as encountering the impervious layer, which is also reflected preferably by finite element simulation.

Key words: soil moisture, volumetric water content, infiltration, rainfall, loess, soil-water characteristic curve, permeability coefficient

CLC Number: 

  • TU 411
[1] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[4] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[5] YANG Zhen-xing, CHEN Jian, SUN Zhen-chuan, YOU Yong-feng, ZHOU Jian-jun, LÜ Qian-qian, . Experimental study on improved seawater slurry for slurry shield [J]. Rock and Soil Mechanics, 2020, 41(2): 501-508.
[6] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[7] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[8] LIU Hua, ZHANG Shuo-cheng, NIU Fu-jun, SHAO Zhu-shan, NIU Ze-lin, LU Jie, . Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions [J]. Rock and Soil Mechanics, 2019, 40(S1): 210-216.
[9] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[10] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[11] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[12] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[13] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[14] HU Ming-jian, CUI Xiang, WANG Xin-zhi, LIU Hai-feng, DU Wei, . Experimental study of the effect of fine particles on permeability of the calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930.
[15] LI Xian, WANG Shi-ji, HE Bing-hui, SHEN Tai-yu, . Permeability condition of soil suitable for MICP method [J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] YU Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J]. , 2010, 31(10): 3280 -3285 .
[6] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[7] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[8] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[9] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[10] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .