›› 2014, Vol. 35 ›› Issue (11): 3253-3258.

• Geotechnical Engineering • Previous Articles     Next Articles

Field test of piled beam-slab foundation

ZHANG Yan-jun1, 2, MU Lin-long1, 2, QIAN Jian-gu1, 2, HUANG Mao-song1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2014-06-05 Online:2014-11-11 Published:2014-12-10

Abstract: The project of wind power generation is an important step of the sustainable development path of China or even the world. Piled beam-slab foundation of wind generating set is a new form of the foundation for wind turbine on land, the research on which is attracting broad attention in academic and engineering fields. Through installing earth pressure cells under the baseboard and reinforcement meters in the piles, the test, based on the wind turbine project at Sheyang port in Jiangsu province, measures the soil pressure under the foundation and the axial force at the top of piles when the wind turbine is under construction and working normally. The research mainly focuses on the change rules of the axial force at the top of piles of the wind turbine piled beam-slab foundation under construction condition and working condition and the analysis of the load sharing percent of piles and soil. The contrastive analysis of the internal forces between the field test and actual design calculation is also carried out. The results show that the piles bear most of the load before the wind turbine running; piles inside bear less load and piles outside bear more after the wind turbine running. The soil bears large percentage of load when the wind turbine is working; so the current design method which doesn’t consider the bearing capacity of soil makes the result safer.

Key words: foundation of wind generating set, piled beam-raft foundation, field test

CLC Number: 

  • TU 473
[1] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[2] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[3] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[4] WANG Qin-ke, MA Jian-lin, HU Zhong-bo, WANG Bin, . Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden [J]. Rock and Soil Mechanics, 2019, 40(4): 1498-1506.
[5] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[6] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[7] CUI Guang-yao, QI Jia-suo, WANG Ming-sheng, . Field test study on large deformation control of surrounding rock of cleaved basalt tunnel [J]. Rock and Soil Mechanics, 2018, 39(S2): 231-237.
[8] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[9] YU Hao-jun, PENG She-qin, ZHAO Qi-hua,. Research on response of laterally loaded pile in gravel soil sloping ground [J]. , 2018, 39(7): 2537-2545.
[10] WANG Xiang-ying, CHEN Yu-min, JIANG Qiang, LIU Han-long, . Soil pressures of the anti-liquefaction rigid-drainage pile during pile driving [J]. , 2018, 39(6): 2184-2192.
[11] LI Zi-qiang, XU Tian-yuan, WU Qiu-jun, YU Li, WANG Ming-nian, WANG Zi-jian,. Field experimental study of basement structural dynamic properties of the heavy-haul railway tunnel in broken surrounding rock [J]. , 2018, 39(3): 949-956.
[12] XIE Tao, LUO Qiang, ZHOU Cheng, ZHANG Liang, JIANG Liang-wei, . Mechanical response of shoulder sheet-pile wall under strictly restricted deformation condition in steep ground along a high-speed railway [J]. , 2018, 39(1): 45-52.
[13] LI Shu-cai, CHEN Hong-bin, ZHANG Chong, GONG Ying-jie, LI Hui-liang, DING Wan-tao, WANG Qi,. Research on effect of advanced support in silty clay tunnel [J]. , 2017, 38(S2): 287-294.
[14] SUN Kai-qiang, TANG Chao-sheng, LIU Chang-li, LI Hao-da, WANG Peng, LENG Ting. Research methods of soil desiccation cracking behavior [J]. , 2017, 38(S1): 11-26.
[15] XU Jiang, GONG Wei-ming, ZHANG Qi, DAI Guo-liang, HUO Shao-lei, YANG Chao ,. Numerical simulation and field test study on vertical bearing behavior of large diameter steel of inclined piles [J]. , 2017, 38(8): 2434-2440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[3] LI Feng, WANG Xiao-rui, LUO Xiao-hui, GUO Yuan-cheng. Assessment methods of chance constrained on bottom stability of foundation pit[J]. , 2010, 31(12): 3867 -3874 .
[4] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[5] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[6] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[7] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
[8] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .
[9] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .
[10] TAN Feng-yi, ZOU Zhi-kui, ZOU Rong-hua, LIN Zu-kai, ZhENG De-gao. Experimental study of engineering property of replaced-backfilling clay[J]. , 2009, 30(S2): 154 -157 .