›› 2014, Vol. 35 ›› Issue (6): 1555-1560.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Disturbance mechanism of blasting excavation to aquiferous rock crack propagation

CHEN Ming1, 2, LU Wen-bo1, 2, YAN Peng1, 2, HU Ying-guo1, 2, ZHOU Chuang-bing1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China
  • Received:2013-03-06 Online:2014-06-10 Published:2014-06-20

Abstract: The hydraulic fracturing of rock mass cracking is one of the important influencing factors that causes rock mass cracking and leakage and even construction water gushing, which is also the research hotspot in geotechnical engineering field. The disturbance effect on crack propagation of aquiferous rock cracking by blasting excavation is analyzed based on fracture mechanics; and the results show that, under disturbance of blasting excavation, the cracking propagation of aquiferous rock relates to the strength and incident angle of blasting stress wave, the value and direction of ground stress, the value of pore water pressure, the crack dip, and the fracture toughness, etc. The effect of blasting stress wave equals to increasing the pore water pressure inside rock mass cracks, which means per 1 cm/s peak particle vibration velocity equals to increasing 0.1 MPa pore water pressure; and the larger the blasting vibration velocity is, the greater the blasting disturbance load will be. The change of ground stress and pore water pressure caused by rock mass excavation around rock mass cracks have complex influence on instability and propagation of cracks, which may change the instability and propagation model of cracks.

Key words: blasting excavation, rock mass, crack propagation, disturbance

CLC Number: 

  • O 383.1
[1] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[2] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[3] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[4] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[5] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[6] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[7] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[8] DING Zhen-jie, ZHENG Jun, LÜ Qing, DENG Jian-hui, TONG Meng-sheng, . Discussion on calculation methods of quality index of slope engineering rock mass in Standard for engineering classification of rock mass [J]. Rock and Soil Mechanics, 2019, 40(S1): 275-280.
[9] CUI Xue-jie, YAN E-chuan, CHEN Wu. Cluster analysis of discontinuity occurrence of rock mass based on improved genetic algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 374-380.
[10] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[11] CHEN Qing-fa, YIN Ting-chang, GAO Yuan, . Three-dimensional demarcation method of homogeneous structural domains of jointed rock masses at underground mine [J]. Rock and Soil Mechanics, 2019, 40(8): 3181-3188.
[12] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
[13] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[14] WANG Hai-jun, YU Shu-yang, REN Ran, TANG Lei, LI Xin-yun, JIA Yu, . Study on failure of brittle solids with circular hole and internal crack based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212.
[15] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[2] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[3] ZHANG Jian-xin, LIU Shuang-ju, ZHOU Jia-bin. Analysis of influence of foundation pits excavation unloading by top-down method on engineering structures[J]. , 2010, 31(S2): 218 -223 .
[4] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[5] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[6] REN Zhong, Sheng Qian. Study on the disciplinary structure and its evolution of rock mechanics in China[J]. , 2009, 30(S1): 293 -298 .
[7] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[8] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[9] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[10] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .