›› 2014, Vol. 35 ›› Issue (9): 2464-2472.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Field test on load-bearing characteristics of full-thread GFRP anti-floating anchor in weathered rock site

BAI Xiao-yu1, ZHANG Ming-yi1, LIU He2, KOU Hai-lei1   

  1. 1. School of Civil Engineering, Qingdao Technological University, Qingdao, Shandong 266033, China; 2. Outdoor Advertising and Lighting Management Office of Qingdao, Qingdao, Shandong 266071, China
  • Received:2013-05-24 Online:2014-09-10 Published:2014-09-16

Abstract: The glass fiber reinforced plastics(GFRP) anti-floating anchor is one kind of new materials which bonds by the resin and the glass fiber. Compared with the steel bar anchor rod, it has the high specific strength, nonelectric conductivity, nonmagnetic nature and corrosion resistance. Based on the full-scale drawing destructive field tests of six GFRP anti-floating anchor and four steel bolts, the load-bearing characteristics and interface bond properties of GFRP anti-floating anchor in moderately weathered granite are studied. By the test results, several conclusions are drawn: (1) There are two failure modes of anti-floating anchor as follows: shear failure between the anchorage rod and grout; and shear failure between the grout and surrounding rock mass. (2) Under the condition of M32.5 grout and the anchorage length with 2.0 m, ultimate anti-lifting bearing capacity of GFRP anti-floating anchor and steel bolt with diameter of 28 mm are 225 kN, ultimated anti-lifting bearing capacity of GFRP anti-floating anchors with diameter of 32 mm is 250 kN, which can be satisfied with engineering demands. (3) The average bond strength between GFRP anti-floating anchor and grout (the first interface) is 1.50-1.54 MPa; (4) The average bond strength between the grout and surrounding rock mass (the second interface) is 0.32-0.37 MPa, which is slightly lower than the average bond strength of the second interface of steel bolt; (5) The average bond strength of the second interface of GFRP anti-floating anchor with diameter of 32 mm is higher than GFRP anti-floating anchor with diameter of 28 mm. According to the test results, the probable failure form and mechanism of GFRP anti-floating anchor are further analyzed. The research results can provide theoretical basis for application of GFRP anti-floating anchor.

Key words: moderately weathered granite, full-thread GFRP anti-floating anchor, ultimate anti-lifting bearing capacity, first interface;second interface

CLC Number: 

  • TU 470
[1] XU Peng, JIANG Guan-lu, WANG Ning, LEI Tao, WANG Zhi-meng,. Centrifugal model test on influence of relative compactness on reinforced soil retaining walls [J]. , 2018, 39(11): 4010-4016.
[2] XIAO Zhong, WANG Yan, WANG Yuan-zhan, LIU Ying, . Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance [J]. , 2018, 39(10): 3603-3611.
[3] YANG Qi, ZHANG You-yi, LIU Hua-qiang, QIN Hua,. Model test on load-failure of a foamed lightweight soil subgrade [J]. , 2018, 39(9): 3121-3129.
[4] WANG Lu-jun, AI Zhi-yong, . Thermal responses of layered pavement system with unsteady heat conduction [J]. , 2018, 39(9): 3139-3146.
[5] YANG Shan-qi, LU Kun-lin, SHI Ke-bao, ZHAO Han-tian, CHEN Yi-ming,. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. , 2018, 39(9): 3303-3312.
[6] WU Gang, SUN Hong-yue, FU Cui-wei, CHEN Yong-zhen, TANG Bi-hui,. A mathematical model and its solution for unsteady flow under siphon drainage by fully penetrating well in soft ground [J]. , 2018, 39(9): 3355-3361.
[7] OU Xiao-duo, QUAN Shou-yue, PENG Yuan-sheng, JIANG Jie, Lü Bo, JIANG Hua,. Design and test of a new type prefabricated supporting structure for foundation pit [J]. , 2018, 39(9): 3433-3439.
[8] ZHAO Ming-hua, CHEN Yao-hao, YANG Chao-wei, XIAO Yao. Nonlinear analysis of pile in steep slope based on finite bar element method [J]. , 2018, 39(8): 3020-3028.
[9] ZHOU Fen, LIANG Qiang, DU Yun-xing. Influences of single unbonded prestressed steel bar on mechanical properties of reinforced body [J]. , 2018, 39(7): 2442-2450.
[10] ZHANG Yu-wei, XIE Yong-li, WENG Mu-sheng,. Centrifugal test on influence of asymmetric foundation excavation to an underlying subway tunnel [J]. , 2018, 39(7): 2555-2562.
[11] AI Zhi-yong, MU Jin-jing, . Analytical layer element solution for two-dimensional multilayered saturated subsoils under a vertical time-harmonic load [J]. , 2018, 39(7): 2632-2638.
[12] WANG Lu-jun, AI Zhi-yong, . Thermo-mechanical coupling response of layered half-space with a buried point heat source [J]. , 2018, 39(6): 2052-2058.
[13] CHEN Wen-qiang, ZHAO Yu-fei, ZHOU Ji-jun,. Shear resistance theory of bolt considering nonlinear behaviour of grout reaction force [J]. , 2018, 39(5): 1662-1668.
[14] XIE Tao, LUO Qiang, ZHANG Liang, LIAN Ji-feng, YU Yue-ming, . Calculation of wall displacement to reach active or passive earth pressure state [J]. , 2018, 39(5): 1682-1690.
[15] FU Xiao, JI Wen-you, ZHANG Jian-jing, CAO Li-cong, FAN Gang,. Seismic response for plane sliding of slope reinforced by anchor-chain-framed ground beams through shaking table test [J]. , 2018, 39(5): 1709-1719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[7] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[8] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .