›› 2011, Vol. 32 ›› Issue (7): 2017-2024.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of particle transport characteristics on permeability of soils from Jiangjiagou ravine

WANG Zhi-bing,WANG Ren,HU Ming-jian,CHEN Neng-yuan,LÜ Shi-zhan   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-11-02 Online:2011-07-10 Published:2011-06-30

Abstract: Permeability variations of two types of soils (G1 soil with high dispersibility, G2 without) from debris flow source area in Jiangjiagou ravine (Yunnan province) due to fine particles transport were evaluated under constant head condition (the constant pressure head is 5 cm) in soils column. Boiled tap water and suspension of 1 g/L particles (the size range: 1.6-104.74 μm) was successively used as inflow water for both soil column experiments. During the stage of boiled tap water seepage flow, permeability coefficient of both the soil layers near the inlet of the column decrease, while that of both the soil layers near the outlet of the column first increased, then decreased. During the stage of particles suspension seepage flow, permeability coefficient of both the soil layers along the column decreased; and the most severe decreases of permeability occurred near the inlet of the columns. The permeability coefficient of soil G1 reduced by more than one order of magnitude; the permeability coefficient of soil G2 reduced by about two orders of magnitude; and the amount of time spent reaching those values in soil G2 was less than in soil G1. That is the rate of the decrease of permeability coefficient in soil G2 was more than in soil G1. Flow rate for both soils significantly decreased in this stage. The results show that the dispersion played a leading role in the seepage process. In other words, the process of itself particles release and transport can affect the pore concentration and offset the clogging effect induced by the deposition of the foreign particles. After the experiments, the pore space of both the soil layers near the inlet of the columns were almost filled by the foreign particles, and the filling rate gradually decreased along the column by observed with the naked eye, which was in agreement with the results of the permeability coefficient decrease of the soils along the column. In addition, the mass loss of particles only occurred in the first several tens of minutes, and the sizes of the loss particles from the two soils fell within the same range of 1–100 μm

Key words: debris flow, fine particles, transport, clogging, permeability

CLC Number: 

  • TU 411
[1] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[2] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[3] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[4] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[5] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[6] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[7] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[8] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[9] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[10] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[11] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[12] DENG Hong-wei, LUO Yi-lin, DENG Jun-ren, WU Li-jie, ZHANG Ya-nan, PENG Shu-quan. Experimental study of improving impermeability and strength of fractured rock by microbial induced carbonate precipitation [J]. Rock and Soil Mechanics, 2019, 40(9): 3542-3548.
[13] LI Bo, HUANG Jia-lun, ZHONG Zhen, ZOU Liang-chao, . Numerical simulation on hydraulic and solute transport properties of 3D crossed fractures [J]. Rock and Soil Mechanics, 2019, 40(9): 3670-3768.
[14] QIU Jin-wei, PU He-fu, CHEN Xun-long, LÜ Wei-dong, LI Lei. Coupled analysis of self-weight consolidation and contaminant transport in confined disposal of contaminated sediments [J]. Rock and Soil Mechanics, 2019, 40(8): 3090-3098.
[15] SHEN Tai-yu, WANG Shi-ji, XUE Le, LI Xian, HE Bing-hui, . An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .