›› 2003, Vol. 24 ›› Issue (5): 729-732.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Catastrophe model analysis of seismic response of foundation-structure system

FANG Ying-guang, CAO Hong   

  1. South China University of Technology, Guangzhou 510641, China
  • Received:2002-06-21 Online:2003-10-10 Published:2014-08-19

Abstract: Dynamic equations for seismic response analysis of foundation-structure system are derived from Lagrange equation. The analyses of complex seismic process and nonlinear dynamic characteristics, such as suddenly jumping and path effect of amplitude response, are made with catastrophe model. Some useful conclusions are drawn; and the analytic results are of good value to parameters design of foundation-structure system.

Key words: foundation-structure system, seismic response, catastrophe analysis, suddenly jumping

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
    [2] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
    [3] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
    [4] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
    [5] YAO Yu, WANG Rui, LIU Tian-yun, ZHANG Jian-min,. Seismic response of high concrete face rockfill dams subject to non-uniform input motion [J]. , 2018, 39(6): 2259-2266.
    [6] LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. Analysis of relationship between dynamic shear strain and vibration velocity of horizontal soil layers [J]. , 2018, 39(10): 3623-3630.
    [7] YIN Xun-qiang, JIN Yu-hao, WANG Gui-xuan,. Seismic response analysis of nuclear island buildings considering soil-structure interaction and nonlinear soil foundation [J]. , 2017, 38(4): 1114-1120.
    [8] YANG Xiao-mei, LAI Qiang-lin. Time-domain equivalent linearization method for two-dimensional seismic response analysis [J]. , 2017, 38(3): 847-856.
    [9] XING Hao-jie, LI Hong-jing, YANG Xiao-mei,. Seismic response analysis of horizontal layered soil sites based on Chebyshev spectral element model [J]. , 2017, 38(2): 593-600.
    [10] LEI Su-su , GAO Yong-tao , PAN Dan-guang , . Equivalent input of soil-structure interaction system considering radiation damping [J]. , 2016, 37(S1): 583-590.
    [11] WANG Ming-wu, ZHAO Kui-yuan, ZHU Qi-kun, XU Xin-yu. Seismic responses of a micropile in liquefiable soils [J]. , 2016, 37(6): 1543-1549.
    [12] CHEN Ji-bin, ZHAO Qi-hua, PENG She-qin, DING Zi-han, YU Hao-jun. Influence of waste landfill on seismic response of transmission tower pile foundation at mountainous slope [J]. , 2015, 36(8): 2277-2283.
    [13] MIAO Jun ,HE Yun-long ,CAO Xue-xing ,XIONG Kun ,YU Hu-qi,. Analysis of strong motion seismograph data at rockfill Yele dam during Lushan earthquake [J]. , 2015, 36(1): 225-232.
    [14] CUI Zhen , LENG Xian-lun , ZHU Ze-qi , SHENG Qian,. Structure effects of random joint network rock mass on seismic response of underground caverns [J]. , 2014, 35(S2): 645-652.
    [15] LUO Chao ,LOU Meng-lin ,GUI Guo-qing,. Comparing time history methods of input ground motion for large span continuous rigid frame bridge [J]. , 2014, 35(S1): 414-422.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
    [2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
    [3] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
    [4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
    [5] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
    [6] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
    [7] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
    [8] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .
    [9] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .
    [10] YANG Xiao, CAI Xue-qiong. Vertical vibration of pile in saturated viscoelastic soil layer considering transversal effects[J]. , 2011, 32(6): 1857 -1863 .