›› 2007, Vol. 28 ›› Issue (10): 2065-2070.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of sediment model on dynamic pressure in overlying ideal fluid due to P wave incidence

WANG Jin-ting, ZHANG Chu-han, JIN Feng   

  1. Department of Hydraulic and Hydropower Engineering, Tsinghua University, Beijing 100084, China
  • Received:2005-10-11 Online:2007-10-10 Published:2013-10-15

Abstract: Through the analytical solutions, the effects of saturated and unsaturated sediment on the dynamic pressures in the overlying ideal fluid due to P wave incidence from underlying elastic half-space are investigated. The sediment is modeled respectively as elastic solid, viscoelastic solid, ideal fluid and viscous fluid. The results obtained are compared with the case in which sediment was viewed as a two-phase poroelastic media. It is concluded that the two-phase poroelastic media can be simplified approximately as a viscoelastic or even as linear elastic solid when its permeability is relatively small (k≤10-3m/s). The findings are useful for construction a sediment model in dynamic analysis of dam-reservoir-sediment-foundation system to enhance the efficiency of the numerical procedures.

Key words: elastic half-space, sediment layer, ideal fluid, P wave, dynamic response

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[2] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[3] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[4] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[5] DING Bo-yang, SONG You-zheng. Dynamic response calculation for u-P solution in saturated soil subjected to an underground point source [J]. Rock and Soil Mechanics, 2019, 40(2): 474-480.
[6] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[7] CUI Qi, HOU Jian-guo, SONG Yi-le. Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station [J]. Rock and Soil Mechanics, 2019, 40(2): 809-817.
[8] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[9] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
[10] SHENG Yun-feng, CHEN Yuan, ZHOU Wei, MA Gang, CHANG Xiao-lin, . Dynamic response analysis of rockfill dam based on modified dynamic shear modulus model [J]. Rock and Soil Mechanics, 2018, 39(S2): 405-414.
[11] BIAN Kang, LIU Jian, HU Xun-jian, LI Peng-cheng, CHEN Ling-zhu, LIU Zhen-ping, . Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake [J]. , 2018, 39(8): 3029-3037.
[12] CAI Qi-peng, CHARLES W W Ng , HU Ping, CHEN Xing-xin, LI Sheng-cai,. Centrifuge experimental study of of dynamic responses of clay stratum overlying a strike-slip fault [J]. , 2018, 39(7): 2424-2432.
[13] LU Jian-fei, ZHOU Hui-ming, LIU Yang. Reflection-transmission matrix method for dynamic response of transversely isotropic multilayered saturated soil [J]. , 2018, 39(6): 2219-2226.
[14] ZHU Jiao, XU Han-gang, CHEN Guo-xing, . Comparison of 1D equivalent-linear and nonlinear seismic site responses for quaternary deep sediment layers in Suzhou region [J]. , 2018, 39(4): 1479-1490.
[15] WANG Ban-qiao, LI Nan, MEN Yu-ming, ZHANG Miao-zhi. Shaking table model test for framed anchors in landslide prevention [J]. , 2018, 39(3): 782-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[3] FU Ce-jian. Experimental study of mechanical properties of saline silt[J]. , 2010, 31(S1): 193 -197 .
[4] DING Wen-qi,YUAN Sen-lin,GAO Xiao-qing,XIE Dong-wu. Research on construction disturbance characteristics caused by super large diameter pipe jacking in electric power tunnel[J]. , 2010, 31(9): 2901 -2906 .
[5] Lü Xi-lin,HUANG Mao-song,QIAN Jian-gu. Strength parameter of sands under true triaxial test[J]. , 2009, 30(4): 981 -984 .
[6] SONG Yong-jun , HU Wei , WANG De-sheng , ZHOU Jun-lin. Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. , 2011, 32(3): 811 -814 .
[7] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[8] CHEN Xin-ze. Interaction mechanism and reinforcement effects of prestressed anchorage piles based on FLAC 3D[J]. , 2009, 30(S2): 499 -504 .
[9] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .
[10] ZHU Yuan-guang,LIU Quan-sheng,ZHANG Cheng-yuan,SHI Kai. Nonlinear viscoelastic creep property of rock with time-temperature equivalence effect[J]. , 2012, 33(8): 2303 -2309 .