›› 2006, Vol. 27 ›› Issue (7): 1087-1091.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical analysis of supporting effect of underground caverns surrounding rockmass of Xiaolangdi Key Water Control Project

ZHU Wei-shen1, LIU Jian-hua1, YANG Fa-yu2   

  1. 1.Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China; 2.Surveying and Design Institute of the Yellow River Water Conservancy Committee, Zhengzhou 450003, China
  • Received:2004-10-12 Online:2006-07-10 Published:2013-11-19

Abstract: Xiaolangdi Key Water Control Project is located at the Yellow River; it has comprehensive effects of flood control, water supply, generating electricity, etc. Its underground powerhouse caverns belong to large-scale type and have a buried depth of 70-100 m. The process and method of numerical analysis was introduced, including: rock plastic yielding criteria adopted; three-dimension geometrical model; rock mass mechanical parameters; initial earth stress field; excavating process simulating method; sustaining structure simulating method. Calculation results of three cases under conditions of two earth horizontal stress coefficients 1.0 and 0.8 are given. The three cases are: (1) having no sustaining structures; (2) having rock bolts and concrete lining but no pre-tensioning cables ; (3) having pre-tensioning cables and rock bolts and concrete lining. Several conclusions of this study are drawn as follows: (1) the sustaining structure has not significant effect in limiting rock displacement and plastic area, but has an indispensable role in fixing loose and broken rock pieces and preventing partial rocks around caverns from falling; (2) excavating process has little influence on pre-tensioning cable force; (3) excavating process causes great tension stress in concrete lining; and the steel-net on rock surface has important effect on confining lining cracking and preventing lining from falling.

Key words: cavern surrounding rocks, supporting structure, stress and displacement, plastic zone, FLAC3D

CLC Number: 

  • TV 223.3+4
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[2] YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition [J]. , 2018, 39(S1): 167-174.
[3] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[4] OU Xiao-duo, QUAN Shou-yue, PENG Yuan-sheng, JIANG Jie, Lü Bo, JIANG Hua,. Design and test of a new type prefabricated supporting structure for foundation pit [J]. , 2018, 39(9): 3433-3439.
[5] WANG Gang, XU Hao, WU Meng-meng, WANG Rui, SONG Xiang, ZHOU Xiao-hua,. Study of plastic zone width and sealing length based on different elastic constitutive equations [J]. , 2018, 39(7): 2599-2608.
[6] LIU Fei-yue, YANG Tian-hong, ZHANG Peng-hai1, ZHOU Jing-ren, DENG Wen-xue, HOU Xian-gang, ZHAO Yong-chuan, . Dynamic inversion of rock fracturing stress field based on acoustic emission [J]. , 2018, 39(4): 1517-1524.
[7] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[8] JIANG Yi, WEI Siyu, SHANG Yan-jun, GAO Qiang, LI Yan-yan,. Study of mechanical properties of deep mixed ground [J]. , 2017, 38(S2): 266-272.
[9] MA Chun-jing, JIANG An-nan, JIANG Zong-bin, WANG Shan-yong,. Hydro-mechanical coupled simulation and analysis of shield tunnel construction based on the zone state index [J]. , 2017, 38(6): 1762-1770.
[10] CHENG Jian-long, YANG Sheng-qi, PAN Yu-cong, Tian Wen-Ling, ZHAO Wei-sheng ,. Study of features of surrounding rock deformation and stress field in squeezing ground excavation by double shield TBM [J]. , 2016, 37(S1): 371-380.
[11] YUAN Wei,HAO Xiao-tian,LI Xiao-chun,BAI Bing,WANG Wei,CHEN Xiang-jun,JI Xiao-lei. A strength reduction method considering reduction of strength parameters coordinating with deformation parameters [J]. , 2016, 37(7): 2096-2100.
[12] LI Chun-lin , MIAO Lin-chang,. Determination of the range of shield tunneling-induced soil disturbance [J]. , 2016, 37(3): 759-766.
[13] ZHANG Chang-guang , FAN Wen , ZHAO Jun-hai,. New solutions of rock plastic displacement and ground response curve for a deep circular tunnel and parametric analysis [J]. , 2016, 37(1): 12-24.
[14] XIAO Cong-miao , ZHANG Ding-li , ZHU Huan-chun , ZHANG Cheng-ping,. Study of large-span underground engineering supporting structure [J]. , 2015, 36(S2): 513-518.
[15] JIA Min-cai , QIANG Xiao , YE Jian-zhong,. Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment [J]. , 2015, 36(S1): 491-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[2] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[3] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[4] ZHONG Guo-sheng, XIONG Zheng-ming. Safety assessment of structure by blasting seism based on wavelet packet energy spectra[J]. , 2010, 31(5): 1522 -1528 .
[5] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[6] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[7] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .
[8] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[9] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[10] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .