›› 2004, Vol. 25 ›› Issue (3): 422-426.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Stability analysis of landslide under influence of groundwater

WEI li-min1,HE Qun1,LIN Zhen-hong2   

  1. 1. School of Civil Engineering and Architecture, Central South University, Changsha 410075, China; 2. Center of Construction Project Management, Guangzhou Railway Group Co., Guangzhou 510600, China
  • Received:2003-05-09 Online:2004-03-10 Published:2014-07-15

Abstract: The shape and location of the sliding surface was confirmed by engineering investigation and displacement monitoring of the landslide of Jiao-Liu Railway project, and the thrust transfer coefficient method was performed to analyze the stability of the landslide, in which the influence of groundwater was taken into account. The strength indexes of soil on sliding surface, cohesion c and angle of internal friction φ, were obtained by back-analysis based on least-squares method. It shows that the method can analyze quantitatively the contribution of dewatering to safety factor of the landslide, so that the retaining structure is designed economically. The strength index that solved by multi-sections’ data represents the overall character of the soil on sliding surface, which reduces the randomness influence of tested data. The method and the conclusion can be used for reference by similar projects.

Key words: landslide, stability, strength index, groundwater, dewatering

CLC Number: 

  • TU 413
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[3] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[4] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[5] LI Chi, WANG Shuo, WANG Yan-xing, GAO Yu, BAI Siriguleng, . Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298.
[6] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[7] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[8] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[9] WU Meng-xi, GAO Gui-yun, YANG Jia-xiu, ZHAN Zheng-gang, . A method of predicting critical gradient for piping of sand and gravel soils [J]. Rock and Soil Mechanics, 2019, 40(3): 861-870.
[10] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
[11] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, ZHENG Xian-wei, . Cause analysis of surface collapse in western area of Chengchao iron mine [J]. Rock and Soil Mechanics, 2019, 40(2): 743-758.
[12] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[13] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[14] YIN Xiao-meng, YAN E-chuan, LIU Xu-yao, LI Xing-ming, . Study on force of underground water in soil stability calculation [J]. Rock and Soil Mechanics, 2019, 40(1): 156-164.
[15] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MU Lin-long,HUANG Mao-song,GONG Wei-ming,YIN Yong-gao. Response analysis of anchorage foundation under lateral loading[J]. , 2010, 31(1): 287 -292 .
[2] MA Xiao-hua, CAI Yuan-qiang, XU Chang-jie. Rocking vibration of an elastic strip footing on saturated soil[J]. , 2010, 31(7): 2164 -2172 .
[3] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[4] ZHANG Le-wen, QIU Dao-hong, LI Shu-cai, ZHANG De-yong. Study of tunnel surrounding rock classification based on rough set and ideal point method[J]. , 2011, 32(S1): 171 -175 .
[5] DONG Jin-yu , YANG Ji-hong , SUN Wen-huai , HUANG Zhi-quan , WANG Dong , YANG Guo-xiang. Prediction of deformation and failure of a large-scale deposit slope during reservoir water level fluctuation[J]. , 2011, 32(6): 1774 -1780 .
[6] BING Hui , HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. , 2011, 32(8): 2307 -2312 .
[7] FAN Shu-li ,CHEN Jian-yun ,ZHANG Jun-qing. Research on bearing capacity of inclined uplift pile under wave cyclic loading[J]. , 2012, 33(1): 301 -306 .
[8] HUANG Xing , LIU Quan-sheng , QIAO Zheng. Research on large deformation mechanism and control method of deep soft roadway in Zhuji coal mine[J]. , 2012, 33(3): 827 -834 .
[9] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[10] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .