›› 2017, Vol. 38 ›› Issue (6): 1647-1656.doi: 10.16285/j.rsm.2017.06.013

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Evolution characteristics of coal reservoir parameters in different adsorption gas extraction process

XU Jiang1, LIU Long-rong1, PENG Shou-jian1, FENG Dan1, SU Xiao-peng1, ZHANG Lan1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University, Chongqing 400030, China; 2. Chongqing Research Institute of China Coal Technology and Engineering Group, Chongqing 400037, China
  • Received:2015-10-16 Online:2017-06-12 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51474040, 51434003 and 51304255).

Abstract: A self-developed multi-field coupling physical simulation testing system was employed to investigate the gas pressure, coal temperature, the deformation and other parameters evolution characteristics of coal reservoir during the process of extracting different adsorption gas. The results demonstrate that the gas pressure of coal reservoir decreased rapidly at the early stage of extraction, and formed a gas pressure equivalent plane with the center of the drill hole. The gas flow rate and pressure drop rate declined with the increase of distance. The stronger ability of adsorption, the lower the gas pressure drop rate and the longer the duration. The time evolution law of coal reservoir temperature and the time evolution law of gas pressure were consistent. Coal reservoir temperature decreased significantly at the early stage. At the late stage of extraction, under the influence of desorption of the adsorbed gas and heat exchange, the coal bed temperature appeared to decrease initially and then increase slightly. The closer position from extraction drill hole, the greater the pressure drop, the more obvious the coal bed temperature decreased and the greater the amount of coal deformation. The stronger the ability of adsorption is, the greater the deformation of the coal caused by gas extraction.

Key words: gas extraction, permeability, coal reservoir parameters, physical modeling

CLC Number: 

  • TD 712.6

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[3] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[4] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[5] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[6] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[7] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[8] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[9] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[10] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[11] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[12] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[13] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[14] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[15] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!