›› 2018, Vol. 39 ›› Issue (5): 1589-1597.doi: 10.16285/j.rsm.2016.1486

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

An elastoplastic constitutive model incorporating cementation effect of stabilizer-treated soil

SUN Kai1, 2, CHEN Zheng-lin1, 2, LU De-chun3   

  1. 1. Key Laboratory of Structures Dynamics Behavior and Control, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; 2. School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; 3. Institute of Geotechnical and Underground Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2016-06-19 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51409072, 51522802), the Natural Science Foundation of Heilongjiang Province of China (LC2013C16) and the China Postdoctoral Science Foundation (2013M541391).

Abstract: Stabilizer-treated soil possesses unique structures due to the cementation of soil particles and cement-hydrate. Compared with remolded normally-consolidated soil, treated soil usually holds a strong structure and overconsolidation ratio. Treated soil exhibits softening behavior due to the loss of cementation induced by the decay of bonded structure during the development of deformation. An evolution rule of cementation effect is proposed to consider the change of cementation strength with shear strain. The hardening parameter in UH model is modified and an elastoplastic constitutive model incorporating cementation effect for stabilizer-treated soils is proposed, in which non-associated flow rule is used. The comparison between predicted mechanical behaviors of cement-treated soil and lime-treated soil with triaxial compression test results indicate the validation and accuracy of the proposed model. Consideration of the contribution of cementation effect can describe the mechanical behaviors of stabilizer-treated soils. The soil behaves like overconsolidated soil due to the cementation strength, while the softening is faster with the decrease of cementation strength during deformation.

Key words: treated soil, structure, overconsolidation, cementation strength, dilatancy, softening, unified hardening parameter

CLC Number: 

  • TU 411

[1] CHEN Qing-fa, YANG Cheng-ye, YIN Ting-chang, WANG Yu, . Combination relationship of ore block structures in metal mines [J]. Rock and Soil Mechanics, 2020, 41(S1): 74-82.
[2] LIU Jie, YANG Yu-hua, YAO Hai-lin, LU Zheng, YUE Chan, . Experimental study on treatment of dispersive clay based on different modification methods [J]. Rock and Soil Mechanics, 2020, 41(S1): 163-170.
[3] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[4] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[5] YUAN Qing-meng, KONG Liang, ZHAO Ya-peng, . An elastoplastic model for energy soils considering filling and bonding effects [J]. Rock and Soil Mechanics, 2020, 41(7): 2304-2312.
[6] YU Hai-tao, ZHANG Zheng-wei, LI Pan, . Improved equivalent response acceleration method for seismic design of underground structures [J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410.
[7] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[8] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[9] SUN Yin-lei, TANG Lian-sheng, LIU Jie, . Advances in research on microstructure and intergranular suction of unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(4): 1095-1122.
[10] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[11] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[12] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
[13] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[14] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[15] LIU Yi-yang, SONG Xuan-min, ZHU De-fu, LI Zhu. Dynamic structural mechanical behavior and response characteristics of large key blocks [J]. Rock and Soil Mechanics, 2020, 41(3): 1019-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!