›› 2018, Vol. 39 ›› Issue (11): 4010-4016.doi: 10.16285/j.rsm.2017.0553

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifugal model test on influence of relative compactness on reinforced soil retaining walls

XU Peng1, 2, JIANG Guan-lu1, 2, WANG Ning1, LEI Tao2, WANG Zhi-meng3   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu, Sichuan 610031, China
  • Received:2017-03-28 Online:2018-11-10 Published:2018-11-15
  • Supported by:
    This work was supported by the Project of Science and Technology Research and Development Plan of China Railway Corporation (2014G003-C).

Abstract: Since the emergence of reinforced soil, reinforced soil retaining walls, which are composed of panel facing, reinforcement and soil, have been widely studied and used in civil engineering such as road engineering and railway engineering. Soil compaction has a significant influence on the deformation, earth pressure, and reinforcement tensile force of reinforced soil retaining walls. In order to study the influence of soil relative compactness on reinforced soil retaining walls, three groups of centrifugal model tests with different soil relative compactness are carried out and the following conclusions have been drawn by analyzing the experimental data: the horizontal deformation of the panel facing decreases as soil relative compactness increases, especially in the loading period; the tested horizontal earth pressure values behind the panel facing are greater than the design values because of soil compaction; the tested reinforced soil retaining walls are conservative because the interface friction coefficient between the reinforcement and the soil is less than the value recommended by design codes; analysis shows that the connection force between reinforcements and panel facing is smaller than the value of horizontal earth pressure obtained from the model tests.

Key words: reinforced soil retaining wall, compaction, earth pressure, tensile force

CLC Number: 

  • TU 470

[1] CHEN Jian-gong, YANG Yang, CHEN Yan-han, CHEN Xiao-bing. Calculation of active earth pressure of cohesive soil behind retaining wall considering soil tensile strength [J]. Rock and Soil Mechanics, 2020, 41(6): 1829-1835.
[2] YU Zhao-sheng, CHEN Xiao-bin, ZHANG Jia-sheng, DONG Liang, ABDOULKADER M S. Analysis of the nonlinearity of coefficient of earth pressure at rest and its calculation method for coarse-grained soils [J]. Rock and Soil Mechanics, 2020, 41(6): 1923-1932.
[3] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[4] WU Long-liang, JIANG H, ui-huang, TANG Jian-wei, GAO Ming-xian, FAN Shao-feng, YAN Xiao-xia, . Continuous compaction monitoring technology based on multiple regression analysis [J]. Rock and Soil Mechanics, 2020, 41(6): 2081-2090.
[5] SHI Yong-yue, WANG Kui-hua, DONG Tian-wen, MA Xian-chun, HUANG Yong-wei. Study of key technologies of vacuum negative-pressure static pile load test [J]. Rock and Soil Mechanics, 2020, 41(5): 1699-1708.
[6] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[7] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[8] TANG Guo-yi, LIU Zhi, LIU Zheng-hong, TANG Li-jun, YU Yong-tang, JIANG Wen, . Application of low energy level dynamic compaction method to Angola Quelo sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 203-209.
[9] DOU Jin-zhong, SHAO Xue-ying, LIAO Chen-cong, CHEN Jin-jian, . Study on multi-tamping effects under different arrangement forms of tamping location [J]. Rock and Soil Mechanics, 2019, 40(S1): 527-534.
[10] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[11] WANG Ping, ZHU Yong-jian, YU Wei-jian, REN Heng, HUANG Zhong, . Experimental analysis on fractional compaction mechanical characteristics of soft and broken rock [J]. Rock and Soil Mechanics, 2019, 40(7): 2703-2712.
[12] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[13] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[14] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[15] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!