›› 2018, Vol. 39 ›› Issue (11): 4025-4032.doi: 10.16285/j.rsm.2017.0426

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table

YANG Yao-hui1, 2, 3, CHEN Yu-min2, 3, LIU Han-long1, 2, 3, 4, LI Wen-wen2, 3, JIANG Qiang2, 3, 5   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052 China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 4. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 5. Jiangyin Construction Project Management Office, Jiangyin, Jiangsu 214400, China
  • Received:2017-03-22 Online:2018-11-10 Published:2018-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51379067,51679072), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (51420105013) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R17).

Abstract: The application of rigid-drainage pile, combining vertical drainage and rigid pile, is a new technology for mitigation of liquefaction. Shaking table tests were carried out to investigate the performance of the rigid-drainage pile against liquefaction. The response of excess pore water pressure, acceleration and lateral displacement of pile top were monitored and analyzed. The results indicated that the use of rigid-drainage pile was an effective method to mitigation of liquefaction. There was much water drainage from the drainage pile when the shaking motion was applied, yet no water drainage for the ordinary pile. The mean value of peaks of excess pore water pressure decreased 12% for the rigid-drainage pile comparing to the ordinary pile. The value of excess pore water pressure approximately decreased 13% when the excess pore water pressure became stability. The effect of drainage was mainly in the previous period of shaking. The lateral permanent displacement on pile top decreased 27% for rigid-drainage pile compared with ordinary pile. The liquefaction, shear-strain hysteresis loops at previous stage were more pronounced than that of post liquefaction stage. the secant modulus of rigid-drainage pile is larger than the ordinary pile. The results of the tests illustrated the effectiveness of rigid-drainage pile in mitigation of liquefaction.

Key words: rigid-drainage pile, shaking table test, pile groups, excess pore water pressure, lateral permanent displacement

CLC Number: 

  • TU 473
[1] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[2] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[3] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[4] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[5] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[6] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[7] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[8] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[9] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[10] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[11] LI Ping, ZHANG Yu-dong, BO Tao, GU Jun-ru, ZHU Sheng. Study of ground motion effect of trapezoidal valley site based on centrifuge shaking table test [J]. Rock and Soil Mechanics, 2020, 41(4): 1270-1278.
[12] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[13] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[14] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[15] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!