Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (7): 1749-1760.doi: 10.16285/j.rsm.2021.1758

• Fundamental Theroy and Experimental Research •     Next Articles

Change of tensile strength of granite residual soil during drying and wetting

TANG Lian-sheng1, 2, 3, WANG Hao1, 2, 3, SUN Yin-lei1, 2, 3, LIU Qi-xin1, 2, 3   

  1. 1. School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; 3. Guangdong Provincial Key Lab. of Geodynamics and Geohazards, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
  • Received:2021-10-19 Revised:2022-03-30 Online:2022-07-26 Published:2022-08-03
  • Supported by:
    This work was supported by the General Program National Natural Science Foundation of China (41877229, 42102303), Guangdong Basic and Applied Basic Research Foundation (2018B030311066, 2019A1515010554) and China Postdoctoral Science Foundation (2019M663241).

Abstract: Using the self-developed soil tensile strength tester, the tensile strength variations of the remolded granite residual soil with water content in wetting or drying process were studied. The microscopic mechanism of the tensile strength variation was investigated through the theories of cementation force and absorbed suction. The results show that the tensile strength first increases and then decreases with increasing the water content, and the relationships between tensile strength and water content on both sides of the peak value can be expressed by exponential functions. In the process of humidification, the tensile strength first increases and then decreases with the increase of moisture content, and the data on both sides of the peak are fitted by linear functions. In the drying process, three stages can be identified in the tensile strength, i.e. exponential increase stage, stable stage and slight decrease stage, the peak tensile strength is 4 times of tensile strengths at different moisture contents. The change of tensile strength of granite residual soil in the process of humidification with different water contents are mainly controlled by absorbed suction. While the change of tensile strength in the drying process is controlled by both absorbed suction and cementation force, the contribution of the cementation force to the tensile strength is more than 70%. The dry cracking process of soil corresponds to several stages of the tensile strength change in the drying process. In the drying process, absorbed suction is the source of the internal tensile stress of soil, indicating that absorbed suction is not only a contributor to tensile strength, but also a destroyer of tensile strength. The results of this study explain the formation source of the tensile strength of the soil and the main controlling factors of its change from another perspective.

Key words: tensile strength, granite residual soil, dry and wet process, absorbed suction, cementation force, dry cracking

CLC Number: 

  • TU 411
[1] ZHU Min, CHEN Xiang-sheng, ZHANG Guo-tao, PANG Xiao-chao, SU Dong, LIU Ji-qiang, . Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications [J]. Rock and Soil Mechanics, 2022, 43(4): 1061-1072.
[2] JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, ZHAO Jin-di, WANG Li-jin, SONG Chen-yu, PAN Xu-wei. Diametric splitting tests on loess based on particle image velocimetry technique [J]. Rock and Soil Mechanics, 2021, 42(8): 2120-2126.
[3] LIU Yue, CHEN Dong-xia, WANG Hui, YU Jia-jing, . Response analysis of residual soil slope considering crack development under drying-wetting cycles [J]. Rock and Soil Mechanics, 2021, 42(7): 1933-1943.
[4] WANG Hua-bin, ZHOU Yu, YU Gang, ZHOU Bo, ZHANG Ai-jun, . A triaxial test study on structural granite residual soil [J]. Rock and Soil Mechanics, 2021, 42(4): 991-1002.
[5] WANG Gang, ZHANG Xian-wei, LIU Xin-yu, XU Yi-qing, LU Jian-feng, . Compression characteristics and microscopic mechanism of Xiamen granite residual soil [J]. Rock and Soil Mechanics, 2021, 42(12): 3291-3300.
[6] ZHANG Zhi-tao, CHEN Sheng-shui, JI En-yue, FU Zhong-zhi, . Tensile fracture properties of gravelly soil reinforced by polypropylene fiber [J]. Rock and Soil Mechanics, 2021, 42(10): 2713-2721.
[7] LI Er-qiang, ZHANG Hong-chang, ZHANG Long-fei, ZHU Tian-yu, LU Jing-gan, FENG Ji-li, . Investigation on Brazilian tests and simulations of carbonaceous slate with different bedding angles [J]. Rock and Soil Mechanics, 2020, 41(9): 2869-2879.
[8] LIU Xin-yu, ZHANG Xian-wei, YUE Hao-zhen, KONG Ling-wei, XU Chao, . SHPB tests on dynamic impact behavior of granite residual soil [J]. Rock and Soil Mechanics, 2020, 41(6): 2001-2008.
[9] ZHANG Mao-chu, SHENG Qian, CUI Zhen, MA Ya-li-na, ZHOU Guang-xin. Effect of loading rate on tensile strength of rock materials and morphology of fracture joint surface [J]. Rock and Soil Mechanics, 2020, 41(4): 1169-1178.
[10] LIU Jie, LI Yun-zhou , YANG Yu-nan, LI Hong-ya, SUN Tao, LI Zheng, . Study on the method for determining the limit content of expansion agent in anchor body of self-expanding bolt [J]. Rock and Soil Mechanics, 2020, 41(10): 3266-3278.
[11] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[12] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[13] JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, . Experimental investigations on tensile cracking mechanical characteristics of gravelly core material [J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782.
[14] GUO Lin-ping, KONG Ling-wei, XU Chao, YANG Ai-wu,. Preliminary study of quantitative relationships between physical and mechanical indices of granite residual soil in Xiamen [J]. , 2018, 39(S1): 175-180.
[15] GAO Gui-yun, WANG Cheng-hu, WANG Chun-quan,. Optimal size range study of rock specimen for double concentric annular core direct tensile test [J]. , 2018, 39(S1): 191-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .