›› 2010, Vol. 31 ›› Issue (S1): 412-418.

• Numerical Analysis • Previous Articles     Next Articles

Finite element analysis of long-term stress-deformation behavior for concrete-faced rockfill dam

LIU Meng-cheng 1, 2, GAO Yu-feng2, LIU Han-long2   

  1. 1. College of Architecture and Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
  • Received:2010-04-23 Online:2010-08-10 Published:2010-09-09

Abstract:

The aim of this paper is to obtain quantitative information of the long-term mechanical behavior of a concrete-faced rockfill dam (CFRD), particularly the effect of rheological deformation on the performance of CFRD. Some numerical simulations have been conducted for a CFRD of a Pumped Storage Power Station in China by ABAQUS finite element code. A modified double-yield surface rheological model incorporating nonlinear strength is applied to describe the long-term mechanical behaviors of the rockfills. The instantaneous plastic deformations of rockfills are determined by the modified double-yield surface model; and the time dependent viscoplastic deformations of rockfills are defined by the empirical equations of exponent function. The predicted results of finite element analysis (FEA) present the evolution of the stress and deformation of dam body, dam element and face slab at the construction, impounding and operational stages. From the results of FEA, it has been shown that the rheological deformation of rockfills at the operational stage has a remarkable effect on the stress and deformation of CFRD. The results or conclusions in this paper are beneficial to further knowledge, reasonable prediction and optimizing design of the long-term mechanical behavior for CFRD.

Key words: concrete-faced rockfill dam, stress and deformation, long-term behavior, finite element method, prediction

CLC Number: 

  • TV 641
[1] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[2] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[3] CHENG Ai-ping, ZHANG Yu-shan, DAI Shun-yi, DONG Fu-song, ZENG Wen-xu, LI Dan-feng, . Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(8): 2965-2974.
[4] CHEN Wei-zhong, TIAN Yun, WANG Xue-hai, TIAN Hong-ming, CAO Huai-xuan, XIE Hua-dong, . Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134.
[5] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[6] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[7] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[8] WANG Gang, PAN Yi-shan, XIAO Xiao-chun, . Study and application of failure characteristics and charge law of coal body under uniaxial loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1823-1831.
[9] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[10] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[11] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[12] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[13] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[14] WANG Dong-yong, CHEN Xi, YU Yu-zhen, LÜ Yan-nan, . Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method [J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896.
[15] ZHONG Zu-liang, BIE Cong-ying, FAN Yi-fei, LIU Xin-rong, LUO Yi-qi, TU Yi-liang, . Experimental study on grouting diffusion mechanism and influencing factors of soil-rock mixture [J]. Rock and Soil Mechanics, 2019, 40(11): 4194-4202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .