›› 2015, Vol. 36 ›› Issue (12): 3417-3424.doi: 10.16285/j.rsm.2015.12.011

• 基础理论与实验研究 • 上一篇    下一篇

水泥土芯样强度变形特性及本构关系试验研究

张本蛟1,黄 斌1, 2,傅旭东1,肖 磊1   

  1. 1.武汉大学 土木建筑工程学院,湖北 武汉 430072;2.长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010
  • 收稿日期:2014-04-21 出版日期:2015-12-11 发布日期:2018-06-14
  • 通讯作者: 傅旭东,男,1966年生,博士,教授,博士生导师,主要从事桩基理论、地基处理、深基坑与边坡和岩土工程数值方法等领域的教学科研工作。E-mail:xdfu@whu.edu.cn E-mail:zhangbjwhu@163.com
  • 作者简介:张本蛟,男,1988年生,博士研究生,主要从事边坡工程、桩基理论和地基处理等方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 51378403,No. 51309028)资助

An experimental study of strength and deformation properties of cemented soil core sample and its constitutive relation

ZHANG Ben-jiao1, HUANG Bin1, 2, FU Xu-dong1, XIAO Lei1   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2014-04-21 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51378403 and 51309028).

摘要: 为了研究现场施工工艺下水泥土的强度及变形特性,对水泥搅拌桩钻孔芯样进行了无侧限抗压强度试验与三轴试验,分析了水泥掺量与围压对水泥土芯样强度、变形特性的影响规律。结果表明:随着水泥掺量的提高,水泥土芯样的强度明显增强,变形模量显著增大,但其破坏应变变小,脆性增大;水泥掺量超过18%的水泥土芯样其应力-应变关系表现为软化型,随着围压的提高,其强度增强,破坏应变增大,脆性降低,且应力-应变关系曲线有可能发生转型;不同围压下的水泥土芯样三轴试验先为体缩,后变化为体胀,发生剪胀的应变较破坏应变略小,是由剪切面上颗粒错动引起的,在颗粒错动达到一定程度后抗剪强度才发挥到峰值;水泥土的结构屈服应力比较大,在围压的作用下其胶结结构未发生破损,强度包线满足摩尔-库仑线性强度规律;根据水泥土的强度变形特征,应力-应变全曲线分弹性、塑性、软化3个阶段,可采用Popovics模型对其进行模拟,与试验结果较为吻合。

关键词: 水泥搅拌桩, 强度变形特性, 无侧限抗压强度试验, 三轴试验, Popovics模型

Abstract: Consolidation drained triaxial compressive tests and unconfined compression strength tests were carried out on cement-mixed pile core samples to study the strength and deformation properties of the cemented soil on-site construction process. The effects of confining pressure and cement content on strength and properties of cement-mixed pile core samples are investigated. It is observed that with increasing the cement content, the strength, deformation modulus and the fragility of the cemented soil core samples obviously increase, but the failure strain decreases; when the cement ratio is more than 18%,the stress-strain relationships of the samples show softening; and with increasing cell pressure, the strength and destruction strain increase, the friability decreases, and the stress-strain curves may transform in the form. The behaviors of the samples all firstly exhibit a volumetric shrinkage and then a dilatancy under different confining pressures. in the consolidation drained triaxial compressive tests. And the dilatation-induced strain is slightly smaller than the failure strain. The dilatancy is caused by moving of particles. Only the particles moving reach a certain extent,the shear strength can develop up to a peak. Because the cemented soil has larger structural yielding stress, its cementation structure is not damaged under confining pressures, and its strength envelope meets Mohr-Coulomb linear rule. According to the strength and deformation properties of cemented soil, its complete stress-strain curve can be divided into three stages of elastic, plastic, softening. Popovics model is used to simulate the stress-strain relationship of cemented soil core sample, which shows that the calculated results agree well with the experimental results.

Key words: cement-mixed pile, strength and deformation properties, unconfined compression strength test, triaxial compressive test, Popovics model

中图分类号: 

  • TU 411
[1] 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611.
[2] 梁珂, 何杨, 陈国兴, . 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31.
[3] 周家作, 韦昌富, 魏厚振, 杨周洁, 李力昕, 李彦龙, 丁根荣, . 多功能水合物沉积物三轴试验系统的研制与应用[J]. 岩土力学, 2020, 41(1): 342-352.
[4] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[5] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[6] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[7] 陈永青, 文畅平, 方炫强, . 生物酶改良膨胀土的修正殷宗泽模型[J]. 岩土力学, 2019, 40(9): 3515-3523.
[8] 丁艳辉, 张丙印, 钱晓翔, 殷 殷, 孙 逊. 堆石料湿化变形特性试验研究[J]. 岩土力学, 2019, 40(8): 2975-2981.
[9] 孔宪京, 宁凡伟, 刘京茂, 邹德高, 周晨光, . 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065.
[10] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[11] 李建朋, 高岭, 母焕胜. 高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J]. 岩土力学, 2019, 40(6): 2119-2126.
[12] 赵丁凤, 梁 珂, 陈国兴, 熊 浩, 周正龙, . 剪切-体积应变耦合的孔压增量模型试验[J]. 岩土力学, 2019, 40(5): 1832-1840.
[13] 梁 珂, 陈国兴, 何 杨, 刘景儒, . 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376.
[14] 罗丹旎, 苏国韶, 何保煜, . 不同饱水度花岗岩的真三轴岩爆试验研究[J]. 岩土力学, 2019, 40(4): 1331-1340.
[15] 谌文武, 刘 伟, 王 娟, 孙冠平, 吴玮江, . 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834-842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[6] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[10] 宋义敏 ,姜耀东 ,马少鹏 ,杨小彬 ,赵同彬 . 岩石变形破坏全过程的变形场和能量演化研究[J]. , 2012, 33(5): 1352 -1356 .