岩土力学 ›› 2019, Vol. 40 ›› Issue (6): 2221-2230.doi: 10.16285/j.rsm.2018.0302

• 基础理论与实验研究 • 上一篇    下一篇

水与微观结构对片岩波速各向异性特征的影响 及其机制研究

尹晓萌1,晏鄂川2,王鲁男3,王闫超2   

  1. 1. 信阳师范学院 建筑与土木工程学院,河南 信阳 464000;2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074; 3. 辽宁石油化工大学 矿业工程学院,辽宁 抚顺 113001
  • 收稿日期:2018-03-05 出版日期:2019-06-11 发布日期:2019-06-22
  • 作者简介:尹晓萌,男,1988年生,博士,讲师,主要从事工程岩土体稳定性研究
  • 基金资助:
    国家自然科学基金(No.41672313,No.41807240);河南省科技攻关项目(No.182102310786);信阳师范学院“南湖青年学者”奖励计划。

Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism

YIN Xiao-meng1, YAN E-chuan2, WANG Lu-nan3, WANG Yan-chao2   

  1. 1. Faculty of Architecture and Civil Engineering, Xinyang Normal University, Xinyang, Henan 464000, China; 2. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 3. Faculty of Mining Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China
  • Received:2018-03-05 Online:2019-06-11 Published:2019-06-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672313, 41807240) and Programs for Science and Technology Development in Henan (182102310786) and Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

摘要: 选取3类不同宏观特征的武当群片岩岩样,分别制取不同片理角的标准圆柱试样。采用波速测试获取烘干、浸水处理后的试样的纵波速度,分析不同含水状态下武当群片岩波速各向异性特征,并结合偏光显微镜、扫描电镜下3类岩样的矿物组成与微观结构特征,探讨内外影响因素下的波速各向异性机制。结果显示:武当群片岩主要矿物为硬质粒状石英、长石与软质片状白云母,硬质矿物含量越高、孔隙率越小,则片岩纵波速度越大,反之越小;干燥样的纵波速度表现出显著各向异性,传播方向由垂直片理面向平行片理面变换时,波速逐渐增大,不同方向的波速值可用波速圆公式进行预测;波速各向异性本质上是微裂隙的定向展布、间隔分布的结果,可间接用白云母定向系数 评价各向异性程度k, 与 呈线性正相关,武当群片岩的k值上限为2.90;浸水后试样的纵波速度普遍增大,这是水充填空隙后对片岩等效体积模量的增加起主控作用的结果,片岩吸水后的波速增长效应受其孔隙率与微裂隙分布特征影响,引起不同类片岩间的纵波速度差异,导致同类片岩的波速各向异性程度与浸水时长呈负相关。

Abstract: Three types of Wudang group schist with different macroscopic characteristics were selected to make the standard cylindrical test specimens possessing different schistosity angles. Firstly, P-wave velocity of the specimens were tested after dried and soaked to investigate the velocity anisotropy of Wudang group schist in different water bearing states. Then, combined with mineral composition and microstructure characteristics of three kinds of schist obtained by polarizing microscope and scanning electron microscopy, he wave velocity anisotropy affected by internal and external factors were further investigated. The results indicate that the major minerals of Wudang group schist are hard granular quartz, feldspar and soft muscovite. The higher content of hard mineral or the smaller porosity of schist, the larger P-wave velocity and vice versa. The P-wave velocity of dry samples shows significant anisotropy. As the angle between the direction of wave propagation and foliation decreases, the wave velocity increases gradually. Wave velocity in different directions can be predicted by the formula expressed as wave velocity circle. The wave velocity anisotropy is essentially caused by the directional and the interval distribution of micro fissures, of which the degree k can be evaluated indirectly through the orientation coefficient of muscovite. There is a linear positive correlation between and , and the upper limit of the p-wave anisotropy of the Wudang group schist is 2.90. Due to the increase of the equivalent volume modulus of schist after the pores filled by water, the P-wave velocity of the soaking sample is generally increased. And the increasing effect of velocity depends greatly on the porosity and distribution of micro fissures, leading to the difference of P-wave velocity among different kinds of schists and a inverse correlation between the anisotropy degree of wave velocity for the same kind of schist and the soaking time.

Key words: schist, P-wave velocity, anisotropy, microstructure, mechanism

中图分类号: 

  • TU 452
[1] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[2] 王金安, 周家兴, 李飞. 滑坡时空演化规律及覆管力学响应研究[J]. 岩土力学, 2020, 41(7): 2155-2167.
[3] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[4] 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431.
[5] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[6] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[7] 王逢睿, 焦大丁, 刘平, 孙博, 王家杰, 杨鸿锐, . 硫酸盐对麦积山砂砾岩风化影响的试验研究[J]. 岩土力学, 2020, 41(7): 2199-2206.
[8] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[9] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[10] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[11] 田云, 陈卫忠, 田洪铭, 赵明, 曾春涛. 考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237-245.
[12] 陈庆发, 杨承业, 尹庭昌, 王宇, . 金属矿山矿块单元结构体组合关系研究[J]. 岩土力学, 2020, 41(S1): 74-82.
[13] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[14] 蔡改贫, 宣律伟, 张雪涛, 郭晋. 多尺度内聚颗粒模型破碎过程研究[J]. 岩土力学, 2020, 41(6): 1809-1817.
[15] 赵军, 郭广涛, 徐鼎平, 黄翔, 胡偲, 夏跃林, 张頔. 三轴及循环加卸载应力路径下深埋 硬岩变形破坏特征试验研究[J]. 岩土力学, 2020, 41(5): 1521-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!