岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 135-142.doi: 10.16285/j.rsm.2018.1933

• 基础理论与实验研究 • 上一篇    下一篇

基于非达西流动的自支撑剪切裂缝导流 能力实验研究

修乃岭1, 2,严玉忠1, 2,胥 云1,王 欣1, 2,管保山1, 2,王 臻1, 2, 梁天成1, 2,付海峰1, 2,田国荣1, 2,蒙传幼1, 2   

  1. 1. 中国石油勘探开发研究院,北京 100083;2. 中国石油集团 油气藏改造重点实验室,河北 廊坊 065007
  • 收稿日期:2018-10-18 出版日期:2019-08-01 发布日期:2019-08-15
  • 作者简介:修乃岭,男,1981年生,硕士研究生,工程师,主要从事油气储层改造相关岩石力学研究
  • 基金资助:
    国家油气重大专项项目23“储层改造新工艺、新技术”(No.2016ZX05023)

Experimental study on conductivity of self-supporting shear fractures based on non-Darcy flow

XIU Nai-ling1, 2, YAN Yu-zhong1, 2, XU Yun1, WANG Xin1, 2, GUAN Bao-shan1, 2, WANG Zhen1, 2, LIANG Tian-cheng1, 2, FU Hai-feng1, 2, TIAN Guo-rong1, 2, MENG Chuan-you1, 2   

  1. 1. Research Institute of Petroleum Exploration and Development, Beijing 100083, China; 2. Key Laboratory of Reservoir Stimulation, CNPC, Langfang, Hebei 065007, China
  • Received:2018-10-18 Online:2019-08-01 Published:2019-08-15
  • Supported by:
    This work was supported by the National Major Projects of Oil and Gas Projects 23“New Technology of Reservoir Stimulation”(2016ZX05023).

摘要: 页岩储层有天然裂缝和弱面发育,采用大规模压裂技术对其进行改造会在改造区域形成大量自支撑剪切裂缝,该自支撑剪切裂缝在页岩气开发中具有重要作用,研究和评价裂缝导流能力的大小对页岩气开发具有重要指导意义。常用的基于Darcy流动方程推导的裂缝导流能力评价公式,不能满足流体高速流动时的裂缝导流能力评价,需要开发适合于页岩的自支撑裂缝导流能力评价方法,为页岩体积改造形成的自支撑裂缝导流能力评价提供支持。选用龙马溪组页岩储层岩样,利用自行研制的剪切-渗流耦合实验系统对样品进行剪切,形成剪切自支撑裂缝,在应力-渗流耦合条件下进行氮气流动测试,获得一组压力和气体流量数据,基于非线性Izbash定律描述气体在自支撑裂缝中流动特征方程,和基于流动特征方法建立自支撑裂缝导流能力计算公式,根据测试数据计算了自支撑裂缝的导流能力,利用裂缝导流能力计算理论气体流量,结果表明理论流量和实测流量具有很好的符合性。开展了不同剪切位移和不同围压条件下页岩自支撑剪切裂缝导流能力评价实验,结果表明,自支撑裂缝导流能力受错位程度、粗糙度等性质影响;在围压10~40 MPa实验条件下自支撑剪切裂缝导流能力在0.1~1 D?cm范围。新建立的导流能力评价方法可为流体高速流动时裂缝导流能力评价提供一种有效途径。

关键词: 页岩, 自支撑裂缝, 裂缝导流能力, 非达西流, Izbash方程

Abstract: The shale reservoir is usually characterized as many natural fractures and weak planes. A large amount of self-supporting shear fractures appear in the hydraulic fracturing zones. These self-supporting shear fractures play an important role in the development of shale gas. Thus the evaluation on the flow conductivity of these shear fractures can provide great guidance for the development of the shale gas. However, the common evaluation formula of the flow conductivity for shear fractures, which is based on the Darcy flow equation, is not applicable when the fluid flow rate is high. Therefore, it is necessary to develop a new evaluation method suitable for assessing the flow conductivity of the self-supporting fractures, and provide the support for the accurate evaluation of the flow conductivity of the self-supporting fractures in the shale after hydraulic fracturing activities. The shale samples of Longmaxi formation are selected in the experiments. The shear tests are carried out in the self-developed shear-seepage coupling experimental system and the self-supporting shear fractures are generated. The nitrogen flow test is carried out under the stress-seepage coupling conditions. A set of pressure and gas flow data are obtained. The flow characteristic equation of gas flow in the self-supporting fractures is described based on the non-linear Izbash’s law. Thus the formula for calculating the flow conductivity of self-supporting fractures is established. Based on the test data, the flow conductivity of self-supporting fractures is computed. Furthermore, the theoretical gas flow amount is obtained. It is found that the theoretical flow rates and the measured flow rates are in a good agreement. The flow conductivity of the self-supporting fractures under different shear displacements and confining pressures are tested. The experimental results show that the flow conductivity of self-supporting fractures is affected by the shear displacement, roughness etc. At the confining pressure is in the range of 10-40 MPa, the flow conductivity of self-supporting shear fractures are in the range of 0.1 to 1 D?cm. The new method proposed in this paper can provide an effective way for the evaluation of the flow conductivity of the self-supporting fractures when the flow rate is high.

Key words: shale, self-supporting fracture, flow conductivity of the fracture, non-Darcy flow, Izbash′s equation

中图分类号: 

  • TE357
[1] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[2] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[3] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[4] 纪国法, 李奎东, 张公社, 李少明, 张 蕾, 刘 炜, . 页岩I型断裂韧性的分形计算方法与应用[J]. 岩土力学, 2019, 40(5): 1925-1931.
[5] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[6] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[7] 唐建新,腾俊洋,张 闯,刘 姝, . 层状含水页岩蠕变特性试验研究[J]. , 2018, 39(S1): 33-41.
[8] 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50.
[9] 赵子江,刘大安,崔振东,唐铁吾,韩伟歌,. 半圆盘三点弯曲法测定页岩断裂韧度(KIC) 的实验研究[J]. , 2018, 39(S1): 258-266.
[10] 左宇军,孙文吉斌,邬忠虎,许云飞,. 渗透压–应力耦合作用下页岩渗透性试验[J]. , 2018, 39(9): 3253-3260.
[11] 张 萍,杨春和,汪 虎,郭印同,徐 峰,侯振坤,. 页岩单轴压缩应力-应变特征及能量各向异性[J]. , 2018, 39(6): 2106-2114.
[12] 腾俊洋,唐建新,张 闯, . 层状含水页岩的抗拉强度特性试验研究[J]. , 2018, 39(4): 1317-1326.
[13] 汤积仁,卢义玉,陈钰婷,张欣玮,敖 翔,贾云中,李 倩,. 超临界CO2作用下页岩力学特性损伤的试验研究[J]. , 2018, 39(3): 797-802.
[14] 索 彧,葛洪魁,王小琼,孟范宝,刘峻嵘. 页岩岩屑高精度波速测量的仪器与方法[J]. , 2018, 39(1): 385-392.
[15] 刘俊新,张 可,刘 伟,施锡林,. 不同围压及应变速率下页岩变形及破损特性试验研究[J]. , 2017, 38(S1): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!