岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 379-386.doi: 10.16285/j.rsm.2019.1439

• 数值分析 • 上一篇    下一篇

西安地铁“先隧后井”法横通道施工控制技术研究

朱才辉1, 2,兰开江1, 2,段宇1, 2,贺红3   

  1. 1. 西安理工大学 省部共建西北旱区生态水利国家重点实验室,陕西 西安 710048;2. 西安理工大学 岩土工程研究所,陕西 西安 710048; 3. 中铁城市发展投资集团有限公司,陕西 西安 710013
  • 收稿日期:2019-08-19 修回日期:2019-12-03 出版日期:2020-06-19 发布日期:2020-06-09
  • 作者简介:朱才辉,男,1983年生,博士,副教授,主要从事黄土力学与工程、地下洞室稳定性分析等方面的教学与研究工作。
  • 基金资助:
    西安理工大学省部共建西北旱区生态水利国家重点实验室(No.2019KJCXTD-12);国家自然科学基金项目(No.51678484);国家留学基金委项目(No.201808610061)。

The control technology of air shaft cross passage construction in Xi’an subway with "tunnel first then well" method

ZHU Cai-hui1, 2, LAN Kai-jiang1, 2, DUAN Yu1, 2, HE Hong3   

  1. 1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; 2. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, P.R. China 3. China Railway City Development and Investment Group Co., Ltd., Xi'an, Shaanxi 710013, China)
  • Received:2019-08-19 Revised:2019-12-03 Online:2020-06-19 Published:2020-06-09
  • Supported by:
    This work was supported by the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology(2019KJCXTD-12), the National Natural Science Foundation of China(NSFC(51678484), and the China Scholarship Council(201808610061).

摘要: 以西安砂卵石和黄土地层中地铁施工为依托,采用数值分析方法和原位监测等手段,针对“先隧后井”法横通道施工期间横通道的开挖方法、地层和既有盾构管片的预加固方案,进行优化分析和评价。结果表明,(1)增加风井横通道的开挖层数会引起地表沉降增大和施工作业空间不足问题,建议采用4层台阶、预留核心土法开挖,上、下台阶长度不宜超过3 m;(2)风井横通道外侧砂卵石、黄土地层的注浆厚度不低于2.0 m,加固后地层弹性模量应提高至少0.2倍以上,应配合超前小导管和大管棚超前预支护措施,可以增强横通道开挖期间地层的稳定性和临近盾构管片的安全性;(3)既有管盾构片破除前应放松横通道两侧4~6环管片的联结螺栓,降低横通道开挖引起的盾构管片纵向挤压应力集中效应;(4)横通道垂直穿过既有盾构管片时应采取静力破除法,从上至下垂直分块拆除管片,再进行横通道与盾构区间隧道接口部位混凝土浇筑和钢筋植入施工,并针对接口范围内地层进行WSS注浆加固,进行接头防渗处理。

关键词: 先隧后井法, 西安地铁, 盾构管片, 施工技术, 力学响应

Abstract: The subway construction in sandy cobble and loess layers in Xi'an is selected as the background. Applying numerical methods, in-situ monitoring and other means,, in view of the excavation methods during the construction of cross passage by tunneling and back well method, the pre-reinforcement schemes of existing shield pipe segment is proposed, optimized analyzed and evaluated. The results show that the increase of excavation layers will result in the surface settlement and the shortage of construction work space. It is suggested to use the 4 steps, and the core soil method is reserved for excavation. The length of the upper and lower steps should not exceed 3 m. The grouting thickness of the gravel and loess stratum from outside of the cross passage is at least 2.0 m, and the elastic modulus of the stratum should be increased by more than 0.2 times after the reinforcement. The advanced support methods of small and large pipe sheds can be used to enhance the excavation stability of the stratum and the safety of the shield tunnel segments. Before the existing pipe shield segment is broken, the connecting bolts of 4 to 6 ring segments on both sides of the transverse channel should be loosened to reduce the effect of longitudinal compression stress concentration of the shield segment caused by the excavation of the transverse channel. When the horizontal cross passage passes through the existing shield segment, the static breaking method should be adopted to remove the segment vertically from top to bottom. Then the concrete pouring and reinforcement implantation should be carried out at the interface between the air shaft cross passage and the shield segment. The WSS grouting should be used to reinforce the soil stratum and implement the anti-seepage treatment at the joint.

Key words: tunnel first then well method, Xi’an subway, shield lining segments, construction technology, mechanical response

中图分类号: 

  • TU452
[1] 蒋中明, 李鹏, 赵海斌, 冯树荣, 唐栋, . 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241.
[2] 翁永红, 张练, 徐唐锦, 黄书岭, 丁秀丽, . 高水头下大型导流洞新型堵头-围 岩相互作用规律与安全评价[J]. 岩土力学, 2020, 41(1): 242-252.
[3] 吴秋红, 赵伏军, 王世鸣, 周志华, 王 斌, 李 玉, . 动力扰动下全长黏结锚杆的力学响应特性[J]. 岩土力学, 2019, 40(3): 942-950.
[4] 张传庆,高 阳,刘 宁,周 辉,冯夏庭, . 深埋隧洞力学响应监测与测试设计的思考[J]. , 2018, 39(7): 2626-2631.
[5] 谢 涛,罗 强,周 成,张 良,蒋良潍, . 高速铁路小变形下陡坡地基路肩桩板墙力学响应[J]. , 2018, 39(1): 45-52.
[6] 邓 鹏 ,郭 林 ,蔡袁强 ,王 军,. 循环荷载下考虑主应力旋转的软土力学响应研究[J]. , 2015, 36(S2): 148-156.
[7] 林伟弟,李彰明,罗智斌. 三轴冲击荷载作用下淤泥力学响应研究[J]. , 2015, 36(7): 1966-1972.
[8] 刘先珊 ,陈 治 . 流体黏性对油井砂岩力学响应的影响[J]. , 2013, 34(10): 2984-2990.
[9] 朱才辉,李 宁. 西安地铁施工诱发地表沉降及对城墙的影响[J]. , 2011, 32(S1): 538-0544.
[10] 黄强兵,彭建兵,邓亚虹,范 文. 西安地铁2号线隧道穿越地裂缝带的设防参数[J]. , 2010, 31(9): 2882-2888.
[11] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223-228.
[12] 丁 浩 ,蒋树屏 ,杨林德 . 外水压下隧道衬砌的力学响应及结构对策研究[J]. , 2008, 29(10): 2799-2804.
[13] 陈金刚,张景飞. 充填物的力学响应对裂隙渗流的影响[J]. , 2006, 27(4): 577-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!