岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 67-76.doi: 10.16285/j.rsm.2020.0582

• 基础理论与实验研究 • 上一篇    下一篇

风化岩遇水软化的强度试验及力学特性研究

陈伟乐1,徐国平2,宋神友1,付佰勇3,虞健刚4, 5,孙苗苗4,丁智4, 5   

  1. 1. 深中通道管理中心,广东 中山 528451;2. 中交公路规划设计院有限公司,北京 100088,3. 中交公路长大桥建设国家工程研究中心有限公司,北京 100088;4. 绍兴文理学院 土木工程系,浙江 绍兴 312000;5. 浙江大学城市学院 土木工程系,浙江 杭州 310015
  • 收稿日期:2020-05-09 修回日期:2021-03-18 出版日期:2022-06-30 发布日期:2022-07-13
  • 作者简介:陈伟乐,男,1973年生,硕士,教授级高工,主要从事超大型跨江通道建设技术管理工作。
  • 基金资助:
    国家重点研发计划专项资助(No.2018YFC0809600,No.2018YFC0809602)。

Strength test and mechanical characteristics of weathered rock softened by water

CHEN Wei-le1, XU Guo-ping2, SONG Shen-you1, FU Bai-yong3, YU Jian-gang4, 5, SUN Miao-miao5, DING Zhi4, 5   

  1. 1. Shenzhen-Zhongshan Link Administration Centre, Zhongshan, Guangdong 528451, China; 2. CCCC Highway Planning and Design Consultants Co., Ltd., Beijing 100088, China; 3. CCCC Highway Bridges National Engineering Research Centre Co., Ltd., Beijing 100088, China; 4. Department of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China; 5. Department of Civil Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
  • Received:2020-05-09 Revised:2021-03-18 Online:2022-06-30 Published:2022-07-13
  • Supported by:
    This work was supported by the National Key R & D Program of China(2018YFC0809600, 2018YFC0809602).

摘要: 对深中通道沉管隧道段风化岩在天然和泡水两种状态下进行常规三轴不排水剪切试验,揭示了在不同条件下风化岩遇水后的强度变化规律。风化岩遇水后强度会有显著降低,表现出明显的遇水软化特性;在其他条件一定时,采用偏应力固结的试样剪切强度较等向固结时降低更为明显;随着围压、偏应力的增大,风化岩的应变软化现象逐渐减弱,峰值强度与残余强度逐渐趋同;将岩体在峰值强度前的弹性模量看作恒量,以内摩擦角和黏聚力达到残余值时的塑性内变量为变量,给出了黏聚力和内摩擦角与塑性内变量的拟合函数关系表达式,改进了考虑风化岩遇水后应变软化的本构模型;通过回归验证,模型的理论计算和试验结果具有一致性,说明该模型可描述风化岩遇水软化的变形特性。根据此模型得到了风化岩的软化模量,并提出了软化系数作为风化岩遇水后强度和刚度折减的参考,可为深中通道等类似工程设计与施工提供理论依据。

关键词: 风化岩, 三轴压缩, 偏应力固结, 塑性内变量, 软化系数

Abstract: The conventional triaxial compression test was carried out on the weathered rock in immersed tunnel section of the Shenzhen-Zhongshan Bridge in natural and water-soaked states to reveal the strength change law of the weathered rock after encountering water under different conditions. The strength of weathered rock will decrease significantly when it encounters water, showing obvious softening behavior. When other conditions are certain, the shear strength of the specimen with deviator stress consolidation is significantly lower than that with isotropic consolidation. With the increases of confining pressure and deviator stress, the strain softening phenomenon of weathered rock gradually weakens, and the peak strength and residual strength gradually converge. The elastic modulus of the rock mass before the peak strength is regarded as a constant, and the plastic internal variable when the internal friction angle and cohesive force reach the residual values is used as the variable. The fitting of the cohesive force and internal friction angle to the plastic internal variable is given. The functional relationship expression improves the constitutive model considering the strain softening of weathered rock after encountering water; through regression verification, the theoretical calculation and test results of the model are consistent, indicating that the model can describe the deformation characteristics of weathered rock softened by water. Based on this model, the softening modulus of the weathered rock is obtained, and the softening coefficient is proposed as a reference for the strength and stiffness reduction of the weathered rock when it encounters water, which can provide a theoretical basis for the design and construction of similar projects such as Shenzhen-Zhongshan bridge.

Key words: weathered rock, triaxial compression test, deviator stress consolidation, plastic internal variable, softening coefficient

中图分类号: 

  • TU452
[1] 刘新喜, 李玉, 范子坚, 李盛南, 王玮玮, 董蓬, . 干湿循环作用下单裂隙炭质页岩能量演化与 破坏特征研究[J]. 岩土力学, 2022, 43(7): 1761-1771.
[2] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[3] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[4] 高峰, 曹善鹏, 熊信, 周科平, 朱龙胤, . 冻融循环作用下受荷青砂岩的脆性演化特征[J]. 岩土力学, 2020, 41(2): 445-452.
[5] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[6] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[7] 彭守建, 王 哲, 许 江, 大久保诚介, 汤 杨, . 三轴压缩条件下饱水岩石破坏后区荷载 速率效应试验研究[J]. 岩土力学, 2018, 39(S2): 72-82.
[8] 崔德山, 陈 琼, 项 伟, 王菁莪, . 黄土坡滑坡饱和滑带土三轴压缩应力松弛试验研究[J]. 岩土力学, 2018, 39(S2): 209-216.
[9] 马旭强,施锡林,尹洪武,杨春和,李银平,马洪岭,. 三轴压缩下含夹层盐岩破坏机制[J]. , 2018, 39(2): 644-650.
[10] 崔 强, 程永锋, 鲁先龙, 谢 枫, 孙付涛, . 强风化岩中挖孔基础抗拔试验及荷载位移曲线 模型参数研究[J]. 岩土力学, 2018, 39(12): 4597-4604.
[11] 张晋勋,杨 昊,单仁亮,隋顺猛,薛东朝,. 冻结饱水砂卵石三轴压缩强度试验研究[J]. , 2018, 39(11): 3993-4000.
[12] 杜海民,马 巍,张淑娟,周志伟. 围压与含水率对冻结砂土破坏应变能密度影响特性研究[J]. , 2017, 38(7): 1943-1950.
[13] 刘新荣,王子娟,傅 晏,张 梁,袁 文,缪露莉, . 考虑干湿循环作用泥质砂岩的强度与破坏准则研究[J]. , 2017, 38(12): 3395-3401.
[14] 郝铁生,耿毅德,陈跃都,. 含脆硬夹层盐岩力学特性试验研究[J]. , 2017, 38(11): 3119-3126.
[15] 刘冬桥,王 焯,张晓云, . 岩石应变软化变形特性及损伤本构模型研究[J]. , 2017, 38(10): 2901-2908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .