岩土力学 ›› 2021, Vol. 42 ›› Issue (3): 846-854.doi: 10.16285/j.rsm.2020.1129

• 岩土工程研究 • 上一篇    下一篇

赣南地区人工切坡降雨致灾机制现场模型试验

王力1, 2,李高1, 2,陈勇1, 2,谭建民2,王世梅1, 2,郭飞1, 2   

  1. 1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002;2. 中南地质科技创新中心,湖北 武汉 430205
  • 收稿日期:2020-08-03 修回日期:2020-12-18 出版日期:2021-03-11 发布日期:2021-03-17
  • 通讯作者: 陈勇,男,1980年生,博士,教授,博士生导师,主要从事非饱和土的力学特性及边坡稳定分析研究。E-mail:cyonger@126.com E-mail:wangli_ctgu@126.com
  • 作者简介:王力,男,1988年生,博士生,讲师,主要从事地质灾害防灾减灾及岩土基本理论研究。
  • 基金资助:
    国家自然科学基金(No.41701013,No.41807294);中国地质调查局项目(No.DD20190716)

Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi

WANG Li1, 2, LI Gao1, 2, CHEN Yong1, 2, TAN Jian-min2, WANG Shi-mei1, 2, GUO Fei1, 2   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. Central South China Innovation Center for Geosciences, Wuhan, Hubei 430205, China
  • Received:2020-08-03 Revised:2020-12-18 Online:2021-03-11 Published:2021-03-17
  • Supported by:
    This work was supported by the Natural Science Foundation of China(41701013, 41807294) and the Geological Survey Project(DD20190716).

摘要: 赣南地区滑坡等地质灾害频发,降雨和人工切坡是该地区地质灾害的最主要诱发因素,物理模型试验尤其是现场模型试验是揭示滑坡发生机制的最有效手段。以赣南地区某风化变质岩人工切坡为研究对象,自主设计降雨模拟系统,布设有4个含水率、孔压监测孔及两处位移监测点,开展现场人工模拟降雨试验。研究边坡土体含水率、孔隙水压力以及位移与降雨过程的响应关系,探索持续强降雨作用下风化变质岩边坡的入渗规律,并揭示变质岩风化土坡的变形失稳模式。结果表明:降雨后土体含水率的变化存在滞后,雨水开始入渗后含水率持续增加,含水率增大幅度随其深度增大而减小;各测孔浅层土体孔压值降雨入渗过程响应明显,表层1 m以下土体一直处于非饱和状态;监测点位移与含水率变化速率呈明显的正相关,边坡变形主要集中于含水率变化明显的边坡一侧;边坡位移与孔压值变化响应明显,边坡内部土体发生剪胀变形现象使得孔压值降低,边坡变形速率随即减小;强降雨条件下陡峭人工切坡的变形破坏过程可归纳为3阶段:陡峭坡面分散坍滑,平台形成拉裂缝,边坡大范围垮塌。

关键词: 现场试验, 降雨入渗, 剪胀变形, 破坏机制, 破坏模式

Abstract: Geological disasters such as landslides occur frequently in southern Jiangxi, mostly induced by rainfall and artificial slope cutting. Physical model tests, especially field model tests, are considered effective to reveal the mechanism of landslides. The case on a cutting slope featured with weathered metamorphic rock in southern Jiangxi is investigated, in which a self-designed rainfall simulation system is applied. The alignment of field instrumentation includes four boreholes for measuring water content as well as pore pressure and two monitoring points for displacement. An artificial rainfall was carried out on the site. The ground response in terms of water content of slope soil, pore water pressure, displacement from the rainfall process is investigated, and the infiltration manner of weathered metamorphic rock slope under continuous heavy rainfall is discovered. The deformation and failure mode of slope based on weathered metamorphic rock is concluded. The results show that there is a lag in the change of soil moisture content after rainfall. The moisture content performs continuously increasing with the infiltration of rainfall water, and the value decreases with depth. The log of pore pressure collected from the bore hole shows an obvious response to the rainfall condition in shallower layers, and the soil below the depth of 1 m stays unsaturated. The displacement at the monitoring point is obviously positively correlated with the rate of change of water content, and the slope deformation is mainly performed on the side of the slope where the water content changes significantly. The slope displacement shows obvious dependence on the change of the pore pressure. The dilatancy deformation of the soil inside the slope reduces the pore pressure value, resulting in the decrease of the rate of slope deformation. The deformation and failure process of a steep artificial cut-slope under heavy rainfall conditions can be divided into three stages: the scattering and slipping of the slope surface; the formation of tensile cracks on the platform; the overall collapse of the slope.

Key words: field test, rainfall infiltration, dilatancy deformation, failure mechanism, failure mode

中图分类号: 

  • TU42
[1] 齐飞飞, 张科, 谢建斌, . 基于DIC技术的含不同节理密度类岩石试件 破裂机制研究[J]. 岩土力学, 2021, 42(6): 1669-1680.
[2] 李欣慰, 姚直书, 黄献文, 刘之喜, 赵翔, 穆克汉, . 循环加卸载下砂岩变形破坏特征与能量演化研究[J]. 岩土力学, 2021, 42(6): 1693-1704.
[3] 刘新荣, 许彬, 周小涵, 谢应坤, 何春梅, 黄俊辉, . 软弱层峰前循环剪切宏细观累积损伤机制研究[J]. 岩土力学, 2021, 42(5): 1291-1303.
[4] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[5] 任连伟, 任军洋, 孔纲强, 刘汉龙, . 冷热循环下PHC能量桩热力响应 和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536.
[6] 高盟, 张致松, 王崇革, 田抒平, . 竖向激振力下WIB-Duxseal联合隔振试验研究[J]. 岩土力学, 2021, 42(2): 537-546.
[7] 季伟伟, 孔纲强, 刘汉龙, 杨庆, . 软塑黄土地区隧道仰拱热力响应特性现场试验[J]. 岩土力学, 2021, 42(2): 558-564.
[8] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[9] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[10] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[11] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[12] 李二强, 张洪昌, 张龙飞, 朱天宇, 路景淦, 冯吉利, . 不同层理倾角炭质板岩巴西劈裂 试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869-2879.
[13] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[14] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[15] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[2] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[5] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[6] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[7] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[8] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[9] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .
[10] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .