岩土力学 ›› 2021, Vol. 42 ›› Issue (6): 1713-1723.doi: 10.16285/j.rsm.2020.1646

• 岩土工程研究 • 上一篇    下一篇

程潮铁矿西区分段崩落法开采影响范围和 极限角研究

张褚强1, 2,沈强2,陈从新2,夏开宗2,王田龙2, 3,刘轩廷2, 3   

  1. 1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068; 2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;3. 中国科学院大学,北京 100049
  • 收稿日期:2020-11-04 修回日期:2021-04-09 出版日期:2021-06-11 发布日期:2021-06-16
  • 通讯作者: 夏开宗,男,1988年生,博士研究生,助理研究员,主要从事边坡稳定性、地下采矿稳定性等方面的研究。E-mail: kzxia@whrsm.ac.cn E-mail:2543788690@qq.com
  • 作者简介:张褚强,男,1995年生,硕士研究生,主要从事采矿沉陷工程方面的研究。
  • 基金资助:
    国家自然科学基金青年基金(No.42002292)

Study on the influence range and limit angle in the west area of Chengchao Iron Mine by sublevel caving

ZHANG Chu-qiang1, 2, SHEN Qiang2, CHEN Cong-xin2, XIA Kai-zong2, WANG Tian-long2, 3, LIU Xuan-ting2, 3   

  1. 1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. China University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-11-04 Revised:2021-04-09 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation for Youth Scholars of China(42002292).

摘要: 分段崩落法开采金属矿常导致地表变形过大,使得地表建(构)筑物损坏。现有的针对金属矿山的地表研究多集中在地表危险变形区边界(移动线)以及移动角等方面,该边界线是地表建(构)筑物损坏而影响正常居住或使用的分界线,但是在此范围之外仍会产生影响,而对于实际影响区域的研究却很少,因此,研究采矿影响范围和极限角对矿山开采沉陷理论具有重要意义。以湖北鄂州程潮铁矿西区为例,以2016年5月至2020年5月期间的地表水平位移监测数据成果为基础,考虑测量误差并设置阈值,通过克里金法插值得到影响线并确定极限角,将其与移动线和移动角对比分析。结果表明:上盘影响线范围会产生突变,开采水平深入对影响线扩展起主导作用,影响线可以作为危险变形区边界扩展的预警;下盘局部区域较大的开裂结构面会造成该区域影响线范围较大,在影响线和移动线均在开裂结构面之外的情况极限角和移动角变化模式一样;上盘不同水平开采边界的差异对极限角有重要影响,因此,研究金属矿山开采引起的极限角及变形预测时,应考虑上下层的边界差异效应;极限角的稳定取决于开采水平是否发生重大变化;矿柱的存在使得端部区域极限角比移动角小约6o

关键词: 采矿工程, 金属矿山, 影响线, 极限角, 危险变形区边界, 移动角

Abstract: The mining of metal mines by sublevel caving often results in excessive surface deformation and damage to the buildings on the ground. Scholars mostly study the boundary of the acceptable deformation (movement curve) and the angle of the boundary of the acceptable deformation on the surface of the metal mine. The curve is the boundary of area where normal living or use is not ensured due to damage of surface buildings or structures, but the area outside of the line is still affected, which is lack of studies on it. Therefore, studying mining influence range and limit angle is of great significance to mining theory. Taking the west area of Chengchao Iron Mine in Ezhou, Hubei as an example, based on the results of monitoring data of horizontal surface displacement in the past 4 years (from May 2016 to May 2020), measuring error is taken into account and the threshold value is set. The influence curve can be obtained through Kriging interpolation, and the limit angle is determined. Comparing with the movement curve and moving angle, the results show that there is a sudden change in the range of the influence curve of the hanging wall, and the mining level plays a dominant role in the extension of the influence curve. The influence curve can be a warning sign of the extension of the boundary of the dangerous deformation zone. A large structural crack will cause a wide range of influence curve in local footwall area, the limit angle outside the structural crack has the same change pattern as the movement angle. The difference in the mining boundary of different levels has an important impact on the limit angle in the hanging wall, which indicates that the boundary difference effect of the upper and lower layers should be considered when studying the limit angle and deformation prediction caused by metal mining. The stability of the limit angle depends on whether the mining level has major changes. Due to the existence of the pillar, the limit angle in the end area is about 6o smaller than the movement angle.

Key words: mining engineering, metal mine, the influence curve, limit angle, the boundary of the acceptable deformation, movement angle

中图分类号: 

  • TU32
[1] 杨 科, 刘文杰, 马衍坤, 许日杰, 池小楼, . 真三轴单面临空下煤岩组合体冲击 破坏特征试验研究[J]. 岩土力学, 2022, 43(1): 15-27.
[2] 刘轩廷, 陈从新, 刘秀敏, 夏开宗, 张褚强, 王田龙, 王月, . 充填开采下顶板−间柱支撑体系的突变失稳分析[J]. 岩土力学, 2021, 42(9): 2461-2471.
[3] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[4] 宋文成, 梁正召, . 承压水上开采倾斜底板破坏特征 与突水危险性分析[J]. 岩土力学, 2020, 41(2): 624-634.
[5] 王飞飞, 任青阳, 邹平, 虎万杰, 马增, 刘正宇, 陈斌, . 查干敖包铁锌矿地表塌陷形成机制 与发展机制研究[J]. 岩土力学, 2020, 41(11): 3757-3768.
[6] 朱斯陶, 姜福兴, 朱海洲, 张俊杰, 连鸿全, 韩国庆, . 高应力区掘进工作面冲击地压事故发生机制研究[J]. 岩土力学, 2018, 39(S2): 337-343.
[7] 宋许根,陈从新,庞厚利,夏开宗,陈 山,杨括宇,孙朝燚,. 金属矿山采矿推进与地表变形关系研究[J]. , 2018, 39(S1): 425-436.
[8] 陈龙龙,陈从新,夏柏如,夏开宗,付 华,邓洋洋,宋许根,孙朝燚,. 程潮铁矿东区地面塌陷机制及扩展机制初探[J]. , 2017, 38(8): 2322-2334.
[9] 张东明,郑彬彬,张先萌,齐消寒,白 鑫, . 含瓦斯砂岩卸围压变形特征与渗透规律试验研究[J]. , 2017, 38(12): 3475-3483.
[10] 夏开宗,陈从新,刘秀敏,宋许根,蒋玄苇,周意超, . 石膏矿矿柱-护顶层支撑体系的流变力学模型分析[J]. , 2017, 38(10): 2923-2930.
[11] 李文鑫,王 刚, 杜文州,王鹏飞,陈金华,孙文斌,. 真三轴气固耦合煤体渗流试验系统的研制及应用[J]. , 2016, 37(7): 2109-2118.
[12] 夏开宗,陈从新,付 华,郑 允,邓洋洋. 金属矿山崩落采矿法引起的岩层移动规律分析[J]. , 2016, 37(5): 1434-1440.
[13] 潘俊锋,秦子晗,冯美华,刘少虹. 岩浆岩床下伏短壁综放面集中静载荷型冲击启动原理[J]. , 2015, 36(9): 2631-2638.
[14] 赵 康 ,赵 奎 ,石 亮,. 基于量纲分析的金属矿山覆岩垮落高度预测研究[J]. , 2015, 36(7): 2021-2026.
[15] 夏开宗,陈从新,夏天游,董元滨,付 华,邓洋洋. 结构面对程潮铁矿西区地表变形的影响分析[J]. , 2015, 36(5): 1389-1396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄建华,宋二祥. 大型锚碇基础围护工程冻结帷幕力学性态研究[J]. , 2009, 30(11): 3372 -3378 .
[2] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[5] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[6] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[7] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[8] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .
[9] 魏厚振,颜荣涛,韦昌富,吴二林,陈 盼,田慧会. 含天然气水合物沉积物相平衡问题研究综述[J]. , 2011, 32(8): 2287 -2294 .
[10] 王国粹,杨 敏. 砂土中水平受荷桩非线性分析[J]. , 2011, 32(S2): 261 -267 .