岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2623-2633.doi: 10.16285/j.rsm.2021.0541

• 基础理论与实验研究 •    下一篇

相变储能充填体孔隙结构及强度劣化机制研究

金爱兵1, 2,巨有1, 2,孙浩1, 2,赵怡晴1, 2,李海1, 2,张舟1, 2,陆通1, 2   

  1. 1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083;2. 北京科技大学 土木与资源工程学院,北京 100083
  • 收稿日期:2021-04-13 修回日期:2021-06-22 出版日期:2021-10-11 发布日期:2021-10-18
  • 通讯作者: 孙浩,男,1992年生,博士,讲师,主要从事采矿工艺与理论、岩石力学方面的教学与研究工作。E-mail: sunhao2019@ustb.edu.cn E-mail: jinaibing@ustb.edu.cn
  • 作者简介:金爱兵,男,1974年生,博士,教授,主要从事岩石力学与工程方面的教学与研究工作
  • 基金资助:
    国家自然科学基金(No. 52004017);中国博士后科学基金(No. 2020M670138);中央高校基本科研业务费专项资金(No. FRF-TP-19-026A1)。

Pore structure and strength deterioration mechanism of phase change energy storage backfill

JIN Ai-bing1, 2, JU You1, 2, SUN Hao1, 2, ZHAO Yi-qing1, 2, LI Hai1, 2, ZHANG Zhou1, 2, LU Tong1, 2   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-04-13 Revised:2021-06-22 Online:2021-10-11 Published:2021-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52004017), the China Postdoctoral Science Foundation Project (2020M670138) and the Fundamental Research Funds for the Central Universities Project (FRF-TP-19-026A1).

摘要: 为探究相变储能充填体孔隙结构特征及其对充填体强度劣化的影响,以硬脂酸丁酯为相变材料,膨胀珍珠岩为吸附介质制备复合相变材料,将其与水泥、尾砂混合制备不同复合相变材料添加量的相变储能充填体,并采用CT(电子计算机断层)扫描、MRI(核磁共振成像)分析、单轴压缩试验等方法得到不同添加量相变储能充填体的强度特征和结构特征,分析其影响机制。研究结果表明:(1)相变储能充填体孔隙率随添加量增大逐渐增大,其中大孔孔隙率近似线性增加,大孔占比逐渐增加,孔隙趋近球体。(2)随着相变材料添加量增加,充填体连通性增大,孔喉长度增加,大孔径孔隙数量增多,孔喉配位数集中在5以下,分形维数先下降再大幅上升,孔隙分布复杂。(3)当复合相变材料的添加量为5%时,受大孔隙及孔隙连通性增大的影响,充填体单轴抗压强度下降了30.2%;当复合相变材料的添加量为10%时,孔径分布趋于均匀,充填体单轴抗压强度下降了48.9%。

关键词: 相变材料, 充填体, 孔隙特征, CT扫描, 核磁共振成像, 单轴抗压强度

Abstract: In order to explore the pore structure characteristics of phase change energy storage backfill and their influence on the strength deterioration of backfill, a composite phase change material was prepared with butyl stearate as the phase change material and expanded perlite as the adsorption medium. Cement and tailings were mixed to prepare backfills with different additive amounts of the composite phase change material. The strength and structure characteristics of the phase change energy storage backfill with different addition amounts were obtained by using the methods of CT (computer tomography) scanning, MRI (magnetic resonance imaging) analysis, and uniaxial compression test, and the influence mechanism was analyzed. The results show that: i) The porosity of phase change energy storage backfill increases gradually with the increase of the addition amount. The macropore porosity increases approximately linearly, the proportion of macorepores increases gradually, and the pores approximate to sphere. ii) With the increase of the amount of phase change material, the connectivity of the backfill increases, the pore throat length increases, and the number of macropores increases. The pore throat coordination number is concentrated below 5, and the fractal dimension decreases first and then increases significantly, resulting in complex pore distribution. iii) With 5% additive amount, the uniaxial compressive strength of backfill decreases by 30.2% due to the increase of macropores and pore connectivity. With 10% additive amount, the pore size distribution becomes uniform and the uniaxial compressive strength decreases by 48.9%.

Key words: phase change materials, backfill, pore characteristics, CT scan, magnetic resonance imaging, uniaxial compressive strength

中图分类号: 

  • TD 803
[1] 王伟, 梁渲钰, 张明涛, 贾泽钰, 张思怡, 王奇智, . 动静组合加载下砂岩破坏机制 及裂纹密度试验研究[J]. 岩土力学, 2021, 42(10): 2647-2658.
[2] 张艳博, 徐跃东, 刘祥鑫, 姚旭龙, 王帅, 梁鹏, 孙林, 田宝柱, . 基于CT的岩石三维裂隙定量表征及 扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671.
[3] 王本鑫, 金爱兵, 王树亮, 孙浩, . 3D打印交叉节理试件力学破裂特性研究[J]. 岩土力学, 2021, 42(1): 39-49.
[4] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
[5] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[6] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[7] 马东东, 陈庆, 周辉, 滕起, 李科, 胡大伟, . 砂砾岩液态CO2破裂机制试验研究[J]. 岩土力学, 2020, 41(12): 3996-4004.
[8] 魏晓明, 郭利杰, 周小龙, 李长洪, 张立新, . 高阶段胶结充填体全时序应力演化规律 及预测模型研究[J]. 岩土力学, 2020, 41(11): 3613-3620.
[9] 易雪枫, 刘春康, 王宇. 金属矿尾废胶结充填体破裂演化过程 原位CT扫描试验研究[J]. 岩土力学, 2020, 41(10): 3365-3373.
[10] 程爱平, 张玉山, 戴顺意, 董福松, 曾文旭, 李丹峰, . 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8): 2965-2974.
[11] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
[12] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[13] 王 俊, 乔登攀, 韩润生, 李广涛, 谢锦程, . 阶段空场嗣后充填胶结体强度模型及应用[J]. 岩土力学, 2019, 40(3): 1105-1112.
[14] 王 琦, 孙会彬, 江 贝, 高 松, 李术才, 高红科, . 基于数字钻探和支持向量机预测岩体 单轴抗压强度的方法[J]. 岩土力学, 2019, 40(3): 1221-1228.
[15] 谢凯楠, 姜德义, 孙中光, 宋中强, 王静怡, 杨 涛, 蒋 翔, . 基于低场核磁共振的干湿循环对泥质砂岩 微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴振君,王水林,汤 华,王 威,葛修润. 边坡可靠度分析的一种新的优化求解方法[J]. , 2010, 31(3): 713 -718 .
[2] 乾增珍,鲁先龙,丁士君. 风积沙地基斜柱基础上拔水平力组合荷载试验[J]. , 2009, 30(1): 257 -260 .
[3] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[4] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[5] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[6] 黄小兰 ,杨春和 ,陈 锋 ,李银平 ,李应芳. 潜江地区层状盐岩天然气储库密闭性评价研究[J]. , 2011, 32(5): 1473 -1478 .
[7] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[8] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[9] 萧富元 ,王建力 ,邵厚洁. 深埋脆性岩石力学参数评估与变形特性探讨[J]. , 2011, 32(S2): 109 -114 .
[10] 刘奉银 ,张 昭 ,周 冬 ,赵旭光 ,朱 良. 密度和干湿循环对黄土土-水特征曲线的影响[J]. , 2011, 32(S2): 132 -136 .