岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2647-2658.doi: 10.16285/j.rsm.2021.0095

• 基础理论与实验研究 • 上一篇    下一篇

动静组合加载下砂岩破坏机制 及裂纹密度试验研究

王伟1, 2, 3,梁渲钰1, 2, 3,张明涛1, 2, 3,贾泽钰2,张思怡2,王奇智4   

  1. 1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043;2. 石家庄铁道大学 道路与铁道工程安全保障教育部重点实验室,河北 石家庄 050043;3. 石家庄铁道大学 河北省金属矿山安全高效开采技术创新中心,河北 石家庄 050043; 4. 河北科技大学 建筑工程学院,河北 石家庄 050018
  • 收稿日期:2021-01-15 修回日期:2021-07-07 出版日期:2021-10-11 发布日期:2021-10-18
  • 通讯作者: 张明涛,男,1994年生,博士研究生,主要从事岩石动力学及低渗透砂岩铀资源高效开采的研究。E-mail: 2868992828@qq.com E-mail:wangweiuuu@163.com
  • 作者简介:王伟,男,1978年生,博士,教授,博士生导师,主要从事工程地质灾害防控及深部资源高效开采的研究。
  • 基金资助:
    国家自然科学基金(No.51979170,No. U1967208);河北省自然科学基金(No. E2021210128,No. E2020208071)。

Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading

WANG Wei1, 2, 3, LIANG Xuan-yu1, 2, 3, ZHANG Ming-tao1, 2, 3, JIA Ze-yu2, ZHANG Si-yi2, WANG Qi-zhi4   

  1. 1. State Key Laboratory of Mechanics Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. Key Laboratory of Ministry of Education of Road and Railway Engineering Safety Assurance, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Hebei Metal Mine Safety and Efficient Mining Technology Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 4. School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2021-01-15 Revised:2021-07-07 Online:2021-10-11 Published:2021-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51979170, U1967208) and the Natural Science Foundation of Hebei Province of China (E2021210128, E2020208071).

摘要: 为探讨砂岩在动静组合加载条件下的破坏特征及损伤规律,采用三维动静组合分离式Hopkinson压杆测试系统对砂岩试样进行了多组动静组合、不同加载速率条件下的冲击试验,利用CT扫描与数字岩芯技术得到了砂岩试样内部不同截面的破坏图和损伤后试样内部的三维重构图及裂纹密度,研究了砂岩在不同受力情况下的破坏形式和破坏机制,并对轴压、围压及应变率对砂岩裂纹密度的影响规律进行了探究。试验结果表明:常规动态冲击作用下,砂岩的动态破坏形式为典型的拉伸劈裂破坏;一维动静组合加载下,砂岩的动态破坏形式为典型的压剪破坏,内部呈现出共轭双曲线形的压剪面;三维动静组合加载下,砂岩的动态破坏形式同样表现为压剪破坏,但内部破坏面为圆台(锥)形,并对不同加载条件下砂岩的动态破坏机制进行了分析。在不同加载状态下砂岩的裂纹密度随应变率的增加均呈递增趋势,轴压、围压的施加限制了裂纹的产生和增长速率,围压相对于轴压对裂纹产生和扩展的限制程度更大,并从砂岩的抗压强度和裂纹产生的补偿空间角度对其进行了解释;利用轴压、围压模拟地应力,分析了地下0、200、400、600 m处应变率对砂岩裂纹密度的影响规律,并对其进行了定量分析,若要产生同样效果的裂纹密度,地下600 m处的砂岩所需应变率大约是无地应力状态下的3.4倍。从裂纹密度角度构建了不同加载状态下损伤变量和应变率之间的量化关系式,该研究结果可为无临空面爆破开采过程中不同爆炸应力波与岩石内部裂纹开展程度的量化问题提供了参考。

关键词: 砂岩, 动静组合加载, CT扫描, 破坏机制, 应变率, 裂纹密度

Abstract: In order to investigate the failure characteristics and damage law of sandstone under the combined dynamic and static loading conditions, three-dimensional movement combination loading test system with separate Hopkinson compressive bar is applied to perform impact tests on sandstone samples under the condition of multiple combinations of dynamic and static state and different loading rates. CT scan and digital core technology are also used to observe the failure diagrams of different sections in the sandstone sample, and the three-dimensional reconstruction diagram and crack density in the damaged sample are obtained. The failure forms and failure mechanism of sandstone under different stress conditions are studied, and the effects of axial pressure, confining pressure and strain rate on the crack density of sandstone are explored. The test results show that the dynamic failure of sandstone is typical tensile splitting failure under the action of conventional dynamic impact. Under one-dimensional combined dynamic and static loading, the dynamic failure mode of sandstone is typical compression and shear failure, and the interior presents a conjugated double curved compression and shear surface. Under three-dimensional dynamic and static loading, the dynamic failure mode of sandstone is also compression and shear failure, but the internal failure surface is circular (cone) shape. The dynamic failure mechanism of sandstone under different loading conditions is analyzed. Under different loading conditions, the crack density of sandstone increases with the increase of strain rate. The application axial compression and confining pressure restrict the crack generation and growth rate, and the confining pressure has a greater limitation on the crack generation than the axial pressure. It is explained from the perspective of compressive strength and compensation space for crack generation of sandstone. The influence of strain rate on the crack density of sandstone at 0, 200, 400 m and 600 m underground is analyzed quantitatively by using axial compression and confining pressure to simulate the in-situ stress. To produce the same crack density, the strain rate of sandstone at 600 m underground is about 3.4 times that of sandstone without in-situ stress. The quantitative relationship between damage variables and strain rates under different loading conditions is established from the perspective of crack density. The research results can provide a reference for quantification of different explosion stress waves and the development degree of internal crack in rock during blasting mining without facing surface.

Key words: sandstone, combined static and dynamic loads, CT scan, failure mechanism, strain rate, crack density

中图分类号: 

  • TU 458
[1] 苗胜军, 王辉, 杨鹏锦, 王亚欣, . 近疲劳强度循环荷载对泥质石英粉砂岩 力学特性影响研究[J]. 岩土力学, 2021, 42(8): 2109-2119.
[2] 李地元, 高飞红, 刘 濛, 马金银. 动静组合加载下含孔洞层状砂岩破坏机制探究[J]. 岩土力学, 2021, 42(8): 2127-2140.
[3] 熊仲明, 吕世鸿, 李运良, 赵奇峰, 李进, 谭书舜, 张向荣, 朱玉荣, 姜磊, 杨琪凡, 张宁波, 张子栋. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782.
[4] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[5] 孙文进, 金爱兵, 王树亮, 赵怡晴, 韦立昌, 贾玉春, . 基于DIC的高温砂岩劈裂力学特性研究[J]. 岩土力学, 2021, 42(2): 511-518.
[6] 周超彪, 刘东, 姜清辉, . 拉剪作用下类岩石试样的力学 特性与损伤破坏机制[J]. 岩土力学, 2021, 42(12): 3335-3344.
[7] 周哲, 陈善雄, 戴张俊, 黄康, 余飞, . 基于点荷载试验的新生代红砂岩 强度软化规律研究[J]. 岩土力学, 2021, 42(11): 2997-3007.
[8] 徐浩淳, 金爱兵, 赵怡晴, 王本鑫, 韦立昌, . 高温层理砂岩劈裂力学特性及裂隙演化研究[J]. 岩土力学, 2021, 42(11): 3069-3078.
[9] 金爱兵, 巨有, 孙浩, 赵怡晴, 李海, 张舟, 陆通, . 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633.
[10] 张艳博, 徐跃东, 刘祥鑫, 姚旭龙, 王帅, 梁鹏, 孙林, 田宝柱, . 基于CT的岩石三维裂隙定量表征及 扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671.
[11] 龚囱, 赵坤, 包涵, 赵奎, 曾鹏, 王文杰, . 红砂岩蠕变破坏声发射震源演化及其分形特征[J]. 岩土力学, 2021, 42(10): 2683-2695.
[12] 王本鑫, 金爱兵, 王树亮, 孙浩, . 3D打印交叉节理试件力学破裂特性研究[J]. 岩土力学, 2021, 42(1): 39-49.
[13] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[14] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[15] 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .
[2] 高 玮. 基于蚁群聚类算法的岩石边坡稳定性分析[J]. , 2009, 30(11): 3476 -3480 .
[3] 徐 彬,殷宗泽,刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. , 2011, 32(1): 44 -50 .
[4] 代仁平,郭学彬,宫全美,蒲传金,张志呈. 隧道围岩爆破损伤防护的霍普金森压杆试验[J]. , 2011, 32(1): 77 -83 .
[5] 杨 洋, 姚海林,卢 正. 蒸发条件下路基对气候变化的响应模型及影响因素分析[J]. , 2009, 30(5): 1209 -1214 .
[6] 邓亚虹,夏唐代,彭建兵,李喜安,黄强兵. 水平层状场地自振频率的剪切质点系法研究[J]. , 2009, 30(8): 2489 -2494 .
[7] 左宇军 ,李术才 ,秦泗凤 ,李利平. 对隔水底板破断突水机制的突变理论分析的认识——兼对潘岳教授等提问的答复[J]. , 2011, 32(7): 2236 -2240 .
[8] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. , 2011, 32(9): 2852 -2855 .
[9] 王忠福 ,刘汉东 ,贾金禄 ,黄志全 ,姜 彤 . 大直径深长钻孔灌注桩竖向承载力特性试验研究[J]. , 2012, 33(9): 2663 -2670 .
[10] 林鲁生 ,蒋 刚 ,白世伟 ,刘祖德 . 土体抗剪强度参数取值的统计分析方法[J]. , 2003, 24(2): 277 -280 .