岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3301-3314.doi: 10.16285/j.rsm.2021.0652

• 基础理论与实验研究 • 上一篇    下一篇

深部开采底板破坏与基本顶岩梁初次垮断的 联动效应

李春元1, 2,左建平2,张勇3   

  1. 1. 煤炭科学研究总院 深部开采与冲击地压防治研究院,北京 100013;2. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083; 3. 中国矿业大学(北京) 能源与矿业学院,北京 100083
  • 收稿日期:2021-04-29 修回日期:2021-06-18 出版日期:2021-12-13 发布日期:2021-12-14
  • 作者简介:李春元,男,1986年生,博士(后),主要从事深部开采岩石力学及深地灾害防控方面的研究工作。
  • 基金资助:
    国家自然科学基金(No.51904303);中国煤炭科工集团有限公司科技创新创业资金专项项目(No.2020-2-ZD001)

The linkage effect between floor failure and first weighting of the main roof in deep longwall mining

LI Chun-yuan1, 2, ZUO Jian-ping2, ZHANG Yong3   

  1. 1. Deep Mining and Rock Burst Research Institute, China Coal Research Institute, Beijing 100013, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 3. School of Energy and Mining Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
  • Received:2021-04-29 Revised:2021-06-18 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51904303) and the Special Project of Science and Technology Innovation and Venture Capital for China Coal Technology & Engineering Group(2020-2-ZD001).

摘要: 深部承压水上开采基本顶初次垮断作为一种剧烈的矿压显现,往往造成底板大范围失稳破坏而诱发突水事故。为研究深部开采底板与基本顶初次垮断的联动破坏效应,应用相似材料试验分析了深部开采顶底板的初次断裂破坏特征,建立了基本顶岩梁初次垮断前后的顶板结构模型及底板力学模型,从应力增量角度研究了深部开采底板压剪、卸荷破坏与基本顶岩梁初次垮断的联动效应,应用离散元软件模拟了不同采深下基本顶初次垮断前后底板应力及变形的联动变化效应,并提出了预裂基本顶消除跨中触矸效应、提高支架工作阻力降低顶板垮断动载荷、降低底板应力卸荷起点与卸荷幅度等弱化顶底板联动效应的深部开采围岩控制技术。结果表明:深部开采基本顶初次垮断后,跨中触矸的采空区中部底板存在一压应力增高区域,其位移由垮断前向上鼓起转变为向下压缩;底板压力拱后拱脚位置由切眼煤壁端变换为触矸区域,底板压力拱由极限跨距的单一拱结构变换为两宽度约为极限跨距一半的双拱结构;采深越大,触矸区域底板水平应力增量越高,且垂直应力增量的影响深度高于水平应力;随最大应力变化量增大,底板最大变形量近似非线性指数增长,且垂直方向非线性增加最甚。

关键词: 底板破坏, 基本顶岩梁, 初次垮断, 深部开采, 应力增量

Abstract: The first weighting of main roof above confined water in deep longwall face is a severe phenomenon of underground pressure, which often causes the large-scale failure at the floor area and water inrush accidents. To study the linkage effect between the floor failure and first weighting of the main roof in deep longwall mining, the fracture and failure characteristics of roof and floor during the first weighting in deep mining were analyzed by the similar material simulation test. The breakage model of the main roof and the mechanical model of floor during the first weighting were established. From the perspective of stress increment, the linkage effect between the compression failure and unloading failure at the floor area and the first breakage of the main roof was obtained. Linkage changes of the stresses and deformation at the floor area during the first weighting in different mining depths were simulated by using the discrete element software. Then the weakened control technologies of roof and floor in deep mining were provided, which mainly include the pre-split main roof for eliminating the mid-span gangue contact effect, enhancing the working resistance of supports for reducing the dynamic loads of main roof breakage, and reducing the unloading starting point and unloading level of stresses at the floor area. The results show that there is a zone of the increased compressive stresses at the floor area of contacting gangues in the middle of main roof after the first breakage of main roof in deep mining. Its displacement direction changes to downward compression after the first weighting from the upward heave before first weighting. It is also found that the position of the back foot changes to the contacting zone from the floor area in front of coal rib, the pressure arch at floor area changes from one single arch structure with the width of the ultimate span to two arches structure whose width are both about half of the ultimate span. The deeper the mining depth, the higher the increment of horizontal stresses at floor area of contacting gangues zone are, and the influence depth of vertical stresses increment are higher than that of horizontal stresses. With the increase of the maximum stress variation, the maximum deformation at floor area approximately increases exponentially, and its non-linear increases are the most serious on the vertical direction.

Key words: floor failure, the beam of main roof, the first weighting, deep longwall mining, stress increment

中图分类号: 

  • TU452
[1] 鲁海峰, 孟祥帅, 颜伟, 姚多喜, . 采煤工作面层状结构底板采动稳定及 破坏深度的圆弧滑动解[J]. 岩土力学, 2020, 41(1): 166-174.
[2] 马 凯,尹立明,陈军涛,陈 明,王自起,崔博强,. 深部开采底板隔水关键层受局部高承压水作用破坏理论分析[J]. , 2018, 39(9): 3213-3222.
[3] 孔宪京,朱发勇,刘京茂,邹德高,宁凡伟,. 不同加载方向条件下堆石料剪胀特性试验研究[J]. , 2018, 39(11): 3915-3920.
[4] 李春元,张 勇,彭 帅,高守阳,马亚仲,. 深部开采底板岩体卸荷损伤的强扰动危险性分析[J]. , 2018, 39(11): 3957-3968.
[5] 黄琪嵩,程久龙, . 软硬互层岩体采场底板的应力分布及破坏特征研究[J]. , 2017, 38(S1): 36-42.
[6] 李洪江,刘松玉,童立元, . 基于应力增量的单桩p-y曲线分析方法[J]. , 2017, 38(10): 2916-2922.
[7] 张勃阳,白海波,张 凯. 类陷落柱介质渗流突变机制试验研究[J]. , 2016, 37(3): 745-752.
[8] 张士川 ,郭惟嘉 ,孙文斌 ,李扬杨 ,王海龙 , . 深部开采隐伏构造扩展活化及突水试验研究[J]. , 2015, 36(11): 3111-3120.
[9] 段宏飞. 底板破坏深度六因素线性预测模型[J]. , 2014, 35(11): 3323-3330.
[10] 唐巨鹏,杨森林,王亚林,吕家庆. 地应力和瓦斯压力作用下深部煤与瓦斯突出试验[J]. , 2014, 35(10): 2769-2774.
[11] 周爱兆 ,卢廷浩 . 等应力增量比路径下接触面应变软化模型[J]. , 2012, 33(S1): 44-48.
[12] 黄志鹏 ,周江平 ,许爱平 ,赫晓光 ,董燕君. 锦屏一级电站地下厂房岩锚梁载荷试验研究[J]. , 2011, 32(S1): 471-0475.
[13] 彭林军 ,赵晓东 ,李术才. 深部开采地表沉陷规律模拟研究[J]. , 2011, 32(6): 1910-1914.
[14] 王志国,周宏伟,谢和平. 深部开采上覆岩层采动裂隙网络演化的分形特征研究[J]. , 2009, 30(8): 2403-2408.
[15] 张艳博,何满潮,刘文涛. 基于三维路线精测方法确定深部工程岩体强度[J]. , 2009, 30(5): 1431-1435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖云华,王 清,陈剑平. 基于优化技术的权重计算方法在岩体质量评价中的应用[J]. , 2009, 30(9): 2686 -2690 .
[2] 张鸿飞,程效军,高 攀,周鑫鑫. 隧道衬砌空洞探地雷达图谱正演模拟研究[J]. , 2009, 30(9): 2810 -2814 .
[3] 范庆来,栾茂田,刘占阁. 软土中T型触探仪贯入阻力的数值模拟[J]. , 2009, 30(9): 2850 -2854 .
[4] 张安康,陈士海,杜荣强,魏海霞. 岩石类材料的能量基率相关弹塑性损伤模型[J]. , 2010, 31(S1): 207 -210 .
[5] 王小军,屈耀辉,魏永梁,杨印海,达益正. 郑西客运专线湿陷性黄土区试验路堤的沉降观测与预测研究[J]. , 2010, 31(S1): 220 -231 .
[6] 陈 瑜,曹 平,蒲成志,刘业科,李 娜. 水-岩作用对岩石表面微观形貌影响的试验研究[J]. , 2010, 31(11): 3452 -3458 .
[7] 赵延喜,徐卫亚. 基于AHP和模糊综合评判的TBM施工风险评估[J]. , 2009, 30(3): 793 -798 .
[8] 张其一,栾茂田. 复合加载情况下非均质地基上条形基础的极限承载力研究[J]. , 2009, 30(5): 1281 -1286 .
[9] 王俊卿,李 靖,李 琦,陈 立. 黄土高边坡稳定性影响因素分析 ——以宝鸡峡引水工程为例[J]. , 2009, 30(7): 2114 -2118 .
[10] 常林越,王金昌,朱向荣. 多级线性荷载下饱和软黏土一维大应变固结解析解[J]. , 2009, 30(8): 2343 -2347 .